
The Adventures of a Pythonista in
Schemeland

Release 0.1

Michele Simionato

August 05, 2009

CONTENTS

1 A bit of history 3
1.1 My target . 3
1.2 A bit of history: Fortran and Lisp . 4
1.3 The algorithmic language Scheme . 5

2 About Scheme implementations 7
2.1 About Scheme implementations . 7
2.2 About the library problem . 8
2.3 Additional difficulties . 10

3 Of parentheses and indentation 13
3.1 Of parens and indentation . 13
3.2 About the prefix syntax . 15

4 Scheme bibliography (and a first program) 17
4.1 Scheme resources for beginners . 17
4.2 A simple Scheme program . 18

5 About tail call optimization (and the module system) 21
5.1 There are no for loops in Scheme . 21
5.2 There is no portable module system . 23
5.3 A simple benchmark . 25

6 The danger of benchmarks 29
6.1 Beware of wasted cycles . 29
6.2 Beware of cheats . 31
6.3 Beware of naive optimization . 32
6.4 Recursion vs iteration . 33

7 Symbols and lists 35
7.1 Symbols . 35
7.2 Lists . 37
7.3 Some example . 38

8 Quoting and quasi-quoting 41
8.1 Quoting . 41

i

8.2 Quasi-quoting . 42
8.3 Programs writing programs . 44
8.4 Appendix: solution of the exercises . 46

9 Introduction to (sweet-)macros 47
9.1 A minimal introduction to Scheme macros 47
9.2 Which macrology should I teach? . 48
9.3 Enter sweet-macros . 49
9.4 An example: multi-define . 51

10 Features of (sweet-)macros 53
10.1 syntax-match and introspection features of sweet-macros 53
10.2 A couple of common mistakes . 54
10.3 Guarded patterns . 55
10.4 Literal identifiers . 57

11 The multiple evaluation problem (and easy-test) 59
11.1 The problem of multiple evaluation . 59
11.2 Taking advantage of multiple evaluation . 61
11.3 A micro-framework for unit tests . 62

12 Are macros really useful? 67
12.1 Are macros “just syntactic sugar”? . 67
12.2 About the usefulness of macros for application programmers 69
12.3 Appendix: a Pythonic for loop . 70

13 Micro-introduction to functional programming 73
13.1 A minimal introduction to functional programming 73
13.2 Functional data structures: pairs and lists . 74
13.3 Functional update . 75

14 Currying, partial application, and fold 79
14.1 Higher order functions and curried functions 79
14.2 Partial application: cut and cute . 81
14.3 fold-left and fold-right . 82

15 List destructuring 85
15.1 About pattern matching . 85
15.2 A list destructuring binding form (let+) . 87

16 Multiple values (and opt-lambda) 91
16.1 list destructuring versus let-values . 91
16.2 Variadic functions from unary functions . 93
16.3 Further examples of destructuring: opt-lambda 94

17 List comprehension 97
17.1 The APS library . 97
17.2 Implementing list comprehension . 99
17.3 A tricky point . 101

ii

18 Streams 103
18.1 The eight queens puzzle . 103
18.2 Iterators and streams . 104
18.3 Lazyness is a virtue . 106

19 The R6RS module system 109
19.1 Modules are not first class objects . 110
19.2 Compiling Scheme modules vs compiling Python modules 111
19.3 Compiling is not the same than executing . 112

20 The compilation and evaluation strategy of Scheme programs 115
20.1 Interpreter semantics vs compiler semantics 115
20.2 Macros and helper functions . 117
20.3 A note about incremental compilers and interpreters 118
20.4 Discussion . 119

21 The different meanings of phase separation 121
21.1 Compile-time, run-time and optimization-time 121
21.2 Strong vs weak phase separation . 123
21.3 A note about politics . 125

22 The Dark Tower of Meta-levels 127
22.1 An easy-looking macro with a deep portability issue 127
22.2 Negative meta-levels . 130
22.3 Meta-levels greater than one . 131
22.4 Discussion . 132

23 Separate compilation and import semantics 135
23.1 The mysterious import semantics . 136
23.2 More implementation-dependent details . 138

24 Mutating variables across modules 141
24.1 Mutating internal variables . 141
24.2 Mutating variables across phases . 142
24.3 Cross-phase side effects and separate compilation 143
24.4 Conclusion . 146

25 Back to macros 147
25.1 Writing your own programming language . 148
25.2 Recursive macros with accumulators . 149
25.3 A trick to avoid auxiliary macros . 150

26 Macros taking macros as arguments 153
26.1 Scheme as an unfinished language . 153
26.2 Two second order macros to reduce parentheses 155
26.3 The case for parentheses . 156

27 Syntax objects 159
27.1 What syntax-match really is . 161
27.2 What macros really are . 162

iii

27.3 A nicer syntax for association lists . 163

28 Hygienic macros 165
28.1 syntax-match vs syntax-rules . 165
28.2 syntax-match vs syntax-case . 166
28.3 syntax-match versus define-macro 166
28.4 The hygiene problem . 167

29 Breaking hygiene 171
29.1 datum->syntax revisited . 171
29.2 Playing with the lexical context . 173
29.3 Hygienic vs non-hygienic macro systems . 174

30 Comparing identifiers 177
30.1 symbol-identifier=? . 177
30.2 bound-identifier=? . 178
30.3 free-identifier=? . 180
30.4 Literal identifiers and auxiliary syntax . 180

31 Indices and tables 183

iv

The Adventures of a Pythonista in Schemeland, Release 0.1

Contents:

CONTENTS 1

The Adventures of a Pythonista in Schemeland, Release 0.1

2 CONTENTS

CHAPTER

ONE

A BIT OF HISTORY

This is the first episode of a long running series of articles about Scheme. Currently I have
published the first 11 episodes of it on Stacktrace. This episode is a revised translation of
http://stacktrace.it/2008/02/le-avventure-di-un-pythonista-schemeland-1/

1.1 My target

As you can imagine from the title, this series has been written from the point of view of a
Python programmer. Nevertheless, it should be easy to follow for any programmer familiar
with any dynamic language such as Perl, Ruby, PHP, Tcl, etc. In general all those languages
(let me call them mainstream dynamic languages) are similar: interpreted, very dynamic, with
a strong support for scripting (ok, maybe PHP does not fit the last point, but you get the idea ;)

Scheme is different. Even if it is very dynamic and well suited for scripting, very often it is also
compiled (both to native code or to a target language such as C, Java or the CLR) and can work
at C speed. Moreover Scheme is a functional language and it makes use of a set of functional
idioms which are unknown in the mainstream languages. Finally, Scheme offers to its user an
extremely advanced macrology (actually it has the most advanced macro system I know) and
extremely powerful features (such as continuations) without equivalent in other languages.

That means that learning Scheme is not trivial: actually it takes of lot of effort and motivation
to master it. If you see a programming language just as a tool to perform a given job in the
smallest possible time, and your job is not programming language research, then you should not
learn Scheme. Scheme is for people who want to know the many possible ways of performing
the same job, who want to understand the advantages and the disadvantages of the different
approaches, who want to explore programming paradigms.

I do not think that the first kind of programmers (let say the engineers) is inferior to the second
kind (let say the explorers) or viceversa. It all depends on where your interest lies. If you
are doing bioinformatics and you researching a cure for a genetic sickness I expect you to
solve your problem in the smallest possible amount of time with a specialized library without
dispersing your efforts reinventing the wheel. On the other hand, if you are a Computer Science
professor I would expect to you to know many different languages and programming languages
paradigms, having reinvented many wheels.

Pythonistas, generically speaking, are in between: they are pragmatic programmers who want
to do a real job, but they are also persons which are not content with the first language they find,
otherwise they would stay for their entire life programming Visual Basic, Java or C++. They

3

http://stacktrace.it/2008/02/le-avventure-di-un-pythonista-schemeland-1/

The Adventures of a Pythonista in Schemeland, Release 0.1

are both engineers and explorers at the same time (you could say that a good engineer should
be a bit of an explorer, too, especially in a fast changing field such a programming).

This series is meant for programmers that fit the description I have just given. Its main goal
is to discuss a few features of the Scheme programming language, with the aim to solicit your
curiousity and make you think if you can learn something useful from this language which is
dismissed by most as being just an academic language.

1.2 A bit of history: Fortran and Lisp

The history of programming begins with two languages with two completely different philoso-
phies and goals: Fortran and Lisp. Both languages come from Academia, but from two opposite
fields: on one side we find physicists and engineers interested in numeric computations to be
run in the most efficient way to solve concrete problems of physics/engineering; on the other
side we find matematicians interested in algorithmic research trying to solve abstract problems
like symbolic computation, theorem proving, artificial intelligence and related topics.

Both fields had first class brains and the result of their effort were Fortran, which is still - after
fifty years - the reference point for numeric computation, and Lisp, which is still the refer-
ence point for metaprogramming techniques. Both languages had and still have and enormous
success in they market niche and will be probably still be us one hundred years from now. Nev-
ertheless, both Fortran and Lisp are nowadays languages of small visibility, since their niches
has become very small and far away from what we mean as mainstream programming today.

The reason for the little popularity of Fortran is clear: the language has been designed with
one and only one goal in mind, efficency in numeric computation (number crunching). For
everything else, Fortran, is not an appealing choice. Nowadays, most programmers have no
reason to write libraries for floating point computations (they are already written, or they are
only written by specialized people) so they have no need for Fortran. Also, C and C++ are
nearly as efficient as Fortran and they have substantial advantages from the point of view of
the interface with the operating system; moreover, most scientific tasks nowadays involves
using a variety of technology and glue languages shine in this context: for instance you could
use Python for writing the user interface and the visualization software, by calling underlying
scientific libraries written in C or in Fortran.

The reason for the little popularity of Lisp is less clear: Lisp (I mean here Lisp in a large sense,
intending the whole family of Lisp-derived languages including Scheme) is a general purpose
language, it could do everything, it is nearly as fast as C, but nobody is using it. Newsgroups
are full of flame wars between people claiming that Lisp is dead versus people claiming that
Lisp is not dead at all and that it will be the language of the future. I will prudentelly avoid all
these hot debates, I would not formulate any theory about the popularity of Lisp, and I will just
discuss the Scheme language, leaving the reader to formulate his own opinion ;)

4 Chapter 1. A bit of history

http://www.levenez.com/lang/history.html

The Adventures of a Pythonista in Schemeland, Release 0.1

1.3 The algorithmic language Scheme

Scheme was born in 1975 (it is nearly twice as old as Python) as a dialect of the Lisp family.
Nowadays by “Lisp” we refer usually to the language Common Lisp as standardized in 1989,
well after Scheme. To discuss the differences and the advantages/disadvantages of Scheme with
respect to Common Lisp would be long and I would expose myself to flame wars: usenet is full
of furious discussions between Scheme and Lispers saying that their languages are completely
different and that the opposite language is complete crap; nevertheless, anybody not knowning
Scheme nor Lisp would have difficulty to distinguish one from the other (!)

Basically, both languages share a lot of features and a lot of what I will say about Scheme will
apply to Common Lisp too. The biggest differences are sociological: the Scheme community
is more academic and interested in research, experimentation and didactic; the Common Lisp
community is closer to the IT business world and interested in solving real word problems. Of
course this is a simplification but there is some truth in it. In the past, Scheme was meant to be
a small language and it was particularly easy to implement; nowadays, this is not true anymore,
since compliance with the latest Scheme specification requires a lot of work from the imple-
mentor side. Many people on the Scheme community are not happy with that, but a larger
specification should in principle improve portability between implementations. Historically,
Common Lisp was born as union of may features presents in Lisp dialects before standardiza-
tion, whereas Scheme was born as intersection of the same features. The Revised Report 5 on
the Algorithmic language Scheme (aka R5RS) says:

Programming languages should be designed not by piling feature on top of feature,
but by removing the weaknesses and restrictions that make additional features ap-
pear necessary. – William Clinger

As a consequence of this principle, all Scheme standards up to R5R6 are much smaller than
the Common Lisp standard: actually too small, so that it is practically impossible to write
“real” applications following the standard only. Recently people have tried to solve this issue
by introducing a new standard, much bigger than the previous ones, the hotly debated R6RS (

1.3. The algorithmic language Scheme 5

http://www.schemers.org/Documents/Standards/R5RS/HTML/
http://www.schemers.org/Documents/Standards/R5RS/HTML/

The Adventures of a Pythonista in Schemeland, Release 0.1

Revised Report 6 on the Algorithmic language Scheme). The preparation of this standard has
generated endless suffering in the Scheme community, since a significant minority has seen
it as a betrayal of the spirit of Scheme. Nowadays Scheme is no more a little language: the
R6RS requires a module system, a condition system, advanced macrology, a standard library,
unicode support and many other features not requested before. Not only it is difficult to write
a new implementation, it is also difficult to take an old R5RS implementation and to make
it compatible with the new standard. Since R6RS is relatively recent (it was published in
September 2007) there are few implementations of it. The first were Larceny and Ikarus; now
there is also ypsilon. Moreover, PLT Scheme has grown an R6RS-compatibility mode. I will
use Ikarus for my examples.

The installation procedure is trivial, it is enough to download the tarball and to compile with
the usual configure and make dance. You can test that your installation works by invoking
the interactive prompt:

$ ikarus
Ikarus Scheme version 0.0.3
Copyright (c) 2006-2008 Abdulaziz Ghuloum

> (display "hello world\n")
hello world

If you are running Windows, you may want to install Common Larceny, that runs on .NET.

This is the end: in the next episode I will discuss the problem of the implementations of Scheme
and the issue of the portability of libraries. See you soon!

6 Chapter 1. A bit of history

http://www.r6rs.org/
http://www.ccs.neu.edu/home/will/Larceny/
http://www.cs.indiana.edu/~{}aghuloum/ikarus/
http://code.google.com/p/ypsilon/
http://www.plt-scheme.org/

CHAPTER

TWO

ABOUT SCHEME IMPLEMENTATIONS

Scheme is a language with many implementations and with few libraries. In this episode I will
discuss the current situation and I will give some useful indication to the Scheme beginner.

2.1 About Scheme implementations

One of the biggest problems for the Scheme beginner is the choice of the implementation. I
did spend months on this issue and I have been on the verge of quitting many times. Since
implementations are fairly different and incompatible if you make the “wrong” choice then
you need to spend some effort to reconvert your code. Nowadays in theory this is less of an
issue, since the R6RS report mandates an unique module system, but many implentations are
still not supporting it. Moreover, in practice, in order to perform enterprise programming tasks
you will always be forced to rely on implementation specific libraries such as database drivers
and frameworks.

I am sure you will ask me what is the right implementation. The answer is that there is no right
implementation: it depends on your needs. Every implementation has different advantages:
there are implementations with a very good interoperability with C, others well integrated in
Java or in .NET, others with a particularly good documentation, others with especially useful
libraries, but there is no single implementation with all the features which is definitively supe-
rior to the others. You may use more than an implementation at the time, but you need to be
careful in the choice of the libraries you are going to use, if you are interested in portability.

I cannot say I have tried all Scheme implementations (there are dozens and dozens of them) so
take my obvervations cum grano salis. I did try PLT Scheme, Bigloo, Chicken, Guile, Ikarus
and Larceny which are Open Source, multiplatform and free. Other major implementations
are Chez Scheme (the interpreter, called Petit Scheme is free, the compiler is not) e and MIT
Scheme (available with GPL licence) but I have not tried them and I cannot say anything. All
the implementations I tried (except Guile) can be compiled and/or generate C code, and are
usually faster than Python. Bigloo in particular is a “high performance compiler” optimized for
floating point computations. PLT Scheme provides an interpreter, a compiler and an IDE called
DrScheme: it is probably the biggest Scheme implementation out there and it is also probably
the most used implementation and the one with most libraries.

Chicken is another big implementation: its major advantage is its author Felix Wilkelmann
who literally perform miracles to support his users. I personally felt much more confortable
in the Chicken mailing list than in the PLT one, but it was a few years ago and of course your

7

http://www.r6rs.org/
http://www.plt-scheme.org
http://www-sop.inria.fr/mimosa/fp/Bigloo/
http://www.call-with-current-continuation.org
http://www.gnu.org/software/guile/guile.html
http://www.cs.indiana.edu/~{}aghuloum/ikarus/
http://www.ccs.neu.edu/home/will/Larceny/
http://www.scheme.com/
http://www.gnu.org/software/mit-scheme/
http://www.gnu.org/software/mit-scheme/
http://www.gnu.org/software/guile/guile.html
http://www-sop.inria.fr/mimosa/fp/Bigloo/
http://www.plt-scheme.org
http://www.call-with-current-continuation.org

The Adventures of a Pythonista in Schemeland, Release 0.1

mileage may vary. Anyway, Chicken is the R5RS-compatible implementation I like most since
it has a very practical attitude: it is written by people working in the industry and not in the
academy. Chicken is a compiler from Scheme to C and it is extremely easy to write wrappers
for C/C++ libraries. Moreover, there are already hundreds of interesting libraries available.
They are called eggs, just as in Python, and they work more a less in the same way. However, it
must be noticed that Chicken had eggs years before Python and more rights to use the name ;-)

Guile is the Scheme version sponsored by the Free Software Foundation and it is used as scrip-
tion language for GIMP; it has been dreamed that Guile would become the main scripting
language for the FSF applications and that it would have replaced Emacs Lisp in Emacs, but
that never happened.

There are many other implementations I have not cited here, but my advice is to stick to one
of the major implementations, unless you have some very special need. Notice, however, that
in my experience, even the so-called major implementations cannot compete with Python for
what concerns reliability and professionality. It is not just that there are much less libraries of
use for the enterprise programmer (database, GUI, Web, etc), they are also more immature and
with more bugs. This clearly has to do with the fact that the total number of users of Scheme
(including all implementations) is order of magnitudes smaller than the number of users of
Python. I must say however that the situation has improved a lot in recent years.

2.2 About the library problem

Libraries are the weak point of Scheme; there is simply no competition between the number of
available libraries for Python and for Scheme. Let me consider just GUI libraries: in Python
it is possible to use practically any existing GUI toolkit. The most used are Tk, GTK, Qt,
WxPython, etc. If you are lucky, you can find a Scheme implementation supporting one of
those toolkits, but certainly not all of them. There are Scheme implementations where it is easy
to write wrappers to C/C++ libraries, easier than in Python: however, it is you who must write
the wrapper, whereas in Python there is always somebody who did the dirty work for you, and
the wrapper is kept up-to-date without any cost for you.

Clearly having a community split in at least a dozen of major implementation does not help.
You see the same issue, to a minor degree, in Common Lisp too. Languages with a reference
implementation like Perl (which actually has a single implementation) or Python and Ruby
(with many implementations, but only one reference implementation) have a substantial ad-
vantage for the point of view of the enterprise programmer, since the community attention is
focalized on a single spot and everybody benefits from the work of everybody.

The Scheme community tried to improve the situation in various ways. One problem is that
the R5RS report is underspecified, so a mechanism for proposing extensions to the standard
was invented, under the name of SRFI (Scheme Request For Implementation). To a Pythonista

8 Chapter 2. About Scheme implementations

http://www.gnu.org/software/guile/guile.html
http://www.gnu.org/software/guile/guile.html
http://www.schemers.org/Documents/Standards/R5RS/HTML/
http://srfi.schemers.org/

The Adventures of a Pythonista in Schemeland, Release 0.1

SRFIs will look a lot like PEPs (Python Enhancement Proposals). Everybody can submit a
SRFI, i.e. a paper describing a library or a set of improvements to the language with the
ambition of getting them into the standard. In principle the standard committee in charge of the
next Revised Report would pick up from the best SRFIs for inclusion in the standard, but there
is no obligation in this sense.

As a matter of fact, all existing implementations are making efforts to include the most impor-
tant SRFIs, so that code using the SRFI libraries has better chances of being portable. Unfortu-
nately, the R6RS editors have ignored many existing SRFIs, reinventing them in imcompatible
ways and sometimes in inferior ways. The R6RS got a lots of critics and some Scheme imple-
mentations claimed that they will never be R6RS-compliant.

Every SRFI must be complemented by a working implementation, and this is the reason from
the I at the end. The implementation must be as much portable as possible, therefore even if
you are using a Scheme implementation which does not support the SRFI you are interested in
natively, it is usually possible to port the SRFI with little effort. It is very important to study
the most relevant SRFIs as soon as you learn Scheme, since if you want to write any practical
application with it, you are going to need them.

2.2. About the library problem 9

http://www.python.org/dev/peps/

The Adventures of a Pythonista in Schemeland, Release 0.1

2.3 Additional difficulties

I did start playing with Scheme in 2003: at the time, I had installation problems with all the
implementations I tried (except Guile which is typically pre-installed in Linux and Cygwin).
Nowadays things are simpler: basically all implementations provide packages that can be in-
stalled on Linux systems via apt-get/yum or other package managers, together with Windows
and OS X installers. One thing which is still giving problem is GNU readline: whereas usually
the Python version you find pre-installed on your system is readline-enabled, most Scheme im-
plementations do not enable readline by default for reason of license, so you have to download
the readline-dev headers, edit the Makefile and recompile everything by hand. This may be
annoying, so I suggest you to use rlwrap instead, which can be installed with apt-get in
Debian/Ubuntu or with‘‘fink‘‘ on the Mac.

rlwrap is a beatiful utility which can add readline support to each command line program (such
as an interactive Scheme interpreter) that does not support it. It is enough to type rlwrap
<scheme-executable> and your REPL magically gains readline line editing, persistent
history and completion; moreover, you get parens matching for free, which is invaluable in
Scheme programming. I make heavy usage of all these features.

By the way, I see now that I have used the term REPL (Read-Eval-Print-Loop) which may
be unknown to a few readers; REPL is just the Lisp name for what is called the interactive
interpreter or console in the Python world, the one with the >>> prompt. In Scheme the REPL
is very well integrated with Emacs, so that you can position the cursor right after a closing
parenthesis and send the corresponding expression to the REPL with CTRL-x-e (in Python you
are forced to select the expression esplicitely instead, so that the user experience is not great as
with Scheme). Of course you need a good Scheme mode: the default one is not so great and I
use quack.el by Neil Van Dyke. The Emacs support for Lispish languages is excellent (which
is not surprising at all, being Emacs written in a Lisp dialect) and I definitely suggest you to
use Emacs as your IDE for Scheme. Of course, lots of people do not like Emacs, so you could
use VI instead, or even a specialized Scheme IDE such as DrScheme provided by PLT Scheme.
The important thing is to have support for parens matching.

Unfortunately, there is no equivalent to IPython and there will never be, since the language
does not have support for docstrings, nor the introspection facilities of Python: you would need
to switch to Common Lisp with SLIME to find something comparable or even better.

Generally speaking (with some exception) the support you can get for what concerns specific
issues of a library is inferior to the support you can get with Python. The comp.lang.scheme
newsgroup is friendly and can help you a lot if you ask how to implement a given algorithm
or how a subtle Scheme construct works, but you should take in account that the number of
posters in comp.lang.scheme is perhaps the 5% of the number of posters in comp.lang.python.
On the other hand, the Schemers are highly esperienced and competent people, so you can get
sound advice there.

All the Scheme implementations I tried are inferior to Python for what concerns introspection
and debugging capabilities. Tracebacks and error messages are not very informative. Some-
times, you cannot even get the number of the line where the error occurred; the reason is that
Scheme code can be macro-generated and the notion of line number may become foggy. On the
other hand, I must say that in the five years I have being using Scheme (admittedly for toying
and not for large projects) I have seen steady improvement in this area.

10 Chapter 2. About Scheme implementations

http://www.gnu.org/software/guile/guile.html
http://tiswww.case.edu/php/chet/readline/rltop.html
http://utopia.knoware.nl/~{}hlub/rlwrap/man.html
http://utopia.knoware.nl/~{}hlub/rlwrap/man.html
http://www.neilvandyke.org/quack/
http://www.slime.org

The Adventures of a Pythonista in Schemeland, Release 0.1

To show you the difference between a Scheme traceback and a Python traceback, here is an
example with PLT Scheme, the most complete Scheme implementation and perhaps the one
with the best error management:

$rlwrap mzscheme
Welcome to MzScheme v4.1 [3m], Copyright (c) 2004-2008 PLT Scheme Inc.
> (define (inv x) (/ 1 x))
> (inv 0)
/: division by zero

=== context ===
/usr/local/collects/scheme/private/misc.ss:68:7

As you see, there is not much information: in particular the information about the name of the
function where the error occurred (inv) is lost and the line number/char number refers to the
read-eval-print-loop code. You may contrast that with the Python traceback:

$ python
Python 2.5.1c1 (r251c1:54694M, Apr 5 2007, 12:45:14)
[GCC 4.0.1 (Apple Computer, Inc. build 5367)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> def inv(x): return 1/x
...
>>> inv(0)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 1, in inv

ZeroDivisionError: integer division or modulo by zero

I should mention however that PLT is meant to be run inside its own IDE, DrScheme.
DrScheme highlights the line with the error and includes a debugger. However such func-

2.3. Additional difficulties 11

http://www.drscheme.org/

The Adventures of a Pythonista in Schemeland, Release 0.1

tionalities are not that common in the Scheme world and in my own experience it is much more
difficult to debug a Scheme program than a Python program.

The documentation system is also very limited as compared to Python: there is no equivalent
to pydoc, no help functionality from the REPL, the concept of docstring is missing from the
language. The road to Scheme is long and uphill; from the point of view of the tools and
reliability of the implementations you will be probably better off with Common Lisp. However,
in my personal opinion, even Common Lisp is by far less productive than Python for the typical
usage of an enterprise programmer.

My interest here is different: I am not looking for a silver bullet, a language more productive
than Python. My aim is to find a language from which a Pythonista can learn something. And
certainly from Scheme we can learn a lot. But you will see what in the next episodes. See you
soon!

12 Chapter 2. About Scheme implementations

http://en.wikipedia.org/wiki/Silver_bullet

CHAPTER

THREE

OF PARENTHESES AND
INDENTATION

In the previous two episodes I have discussed a few important subjects such as availability of
libraries, reliability of implementations, support in case of bugs, etc. However, I have not said
anything about the language per se. In this episode I will talk more about the language, by start-
ing from the syntax, with a discussion of the infamous parentheses. Lisp parens have been the
source of infinite debates from the very beginning and always will be. As you probably know,
LISP means Lots of Irritating Superfluous Parentheses, and Scheme has even more parentheses
than other Lisps!

3.1 Of parens and indentation

I did the mistake of writing Scheme code with an editor different from Emacs (the default
scheme mode is terrible in my opinion). It has been like shooting in my foot. After a few
weeks of suffering I came back to Emacs, I asked on comp.lang.scheme and comp.emacs and
I was pointed out to excellent scheme mode, called quack.el and written by Neil Van Dike.
Moreover, I have discovered how to augment the contrast of the parens (parens-edit mode) and
I feel completely comfortable. But let me repeat that it is suicidal to try to edit Scheme/Lisp
code without a good support from the editor. In my opinion this is the first reason why legions
of beginners escape from Scheme/Lisp: who wants to be forced to learn Emacs only to write a
few lines of code?

Of course, here I am exaggerating a bit, since there programmers that are able to write Lisp code
even with vi and other editors, and there are even Scheme IDEs around (i.e. DrScheme, or a
Scheme plugin for Eclipse): nevertheless I would still recommend Emacs to write Scheme/Lisp
code, since Emacs itself is written in (Emacs) Lisp and that should tell something about its abil-
ities to manage Lisp code. If you are coding in Common Lisp you should not miss SLIME, the
Superior Lisp Interaction Mode for Emacs, which is a really really powerful IDE for Common
Lisp.

However, even if I recommend Emacs and even if I think that the time spent to master it is
time well spent, I do not think that forcing people to use a highly specialized tool to use a
general purpose programming language is a good think. In theory, everybody should have the
freedom to choose her editor, and it should be possible to program even in Notepad (even if
it is a thing I do not wish to anybody!). This in theory: in practice, every professional pro-
grammer use some dedicated tool to write code, so if you don’t want to use Emacs please make

13

http://www.acronymfinder.com/af-query.asp?acronym=LISP
http://groups.google.com/group/comp.lang.scheme/topics
http://groups.google.com/group/comp.emacs/topics
http://www.neilvandyke.org/quack/
http://www.drscheme.org/
http://schemeway.sourceforge.net/
http://common-lisp.net/project/slime/

The Adventures of a Pythonista in Schemeland, Release 0.1

sure your editor/IDE has a good Scheme mode, otherwise consider changing your developing
environment.

It is interesting to notice what Paul Graham - a big name in the Lisp community and the main
author of Arc, a new language of the Lisp family recently released and implemented in PLT
Scheme - says about the parentheses:

We also plan to let programmers omit parentheses where no ambiguity would re-
sult, and show structure by indentation instead of parentheses. I find that I spon-
taneously do both these things when writing Lisp by hand on whiteboards or the
backs of envelopes.

Arc for the moment seems to require the parens, but it has a bit less parentheses than Scheme,
as you can infer from the tutorial. It is clear that the parens are NOT necessary and one could
imagine various tricks to reduce their number (I personally tried various approaches when I
began programming in Scheme).

There is also an SRFI (SRFI-49: Indentation-sensitive syntax) that proposes to use indentation
instead of parentheses taking inspiration from Python (!) The proposal should be considered as
curiosity; discussing about indentation could have had some sense thirty years ago, at the time
Scheme was designed. Nowadays, when 100% of Scheme code is written with parentheses,
there is no point in not using them. Beginners would be penalized if they started using a style
nobody uses.

In my (semi-serious) opinion, parens are a real initiation test: if a programmer cannot stand
them than he is not worth of using Scheme/Lisp and he should address himself on inferior
languages (i.e. all languages, according to what the majority of Schemers/Lispers think). In my
experience the snobish attitude is more common in the Common Lisp community whereas in
the Scheme community there is more respect for the newbie. Anyway, the initiation test works

14 Chapter 3. Of parentheses and indentation

http://www.paulgraham.com/
http://www.paulgraham.com/arcll1.html
http://www.paulgraham.com/arcll1.html
http://ycombinator.com/arc/tut.txt
http://srfi.schemers.org/srfi-49/srfi-49.html

The Adventures of a Pythonista in Schemeland, Release 0.1

and the average Scheme/Lisp programmer is usually smarter than the average programmer in
other languages, since only the most persistent survive.

As a Pythonista I do not believe in those tricks: I think every language should be made acces-
sible to the largest possible public. That means many second rate programmers will be able to
learn it, but this is an opportunity, not an issue: the existence of poor programmers increases
the number of available positions, since you need people to fix their mistakes! Otherwise how
would you justify the number of job offers for Java and C++? (I said I was only semi-serious,
don’t take this personally, eh? ;)

Anyway, when after long suffering one has learned to manage with parens, there is no way back:
once you have mastered a good editor the parens give you strong advantages when writing code.
One of the main ones is automatic indentation with a single keypress. No more snippets of code
send via e-mail and made unredable by the newlines added by the mail program; no more time
wasted on reindenting code when refactoring.

Of course, nothing is perfect, and you may forget a paren here and there, but overall I will
definitively admit that in the long run the parentheses pay off. On the other hand, in the short
run, they make life much harder for the newbies; I still think that an optional syntax with less
parentheses to be used by beginners or when using a poor editor would make sense, in a new
Scheme-like langauge. But it is too late for Scheme itself: for the best or for the worst Scheme
is a language full of parentheses and it is better to take full advantage of them.

Nota Bene: new languages based on s-expressions are born every day (the newcomers are
Arc, which I have already cited, and Clojure, which runs on the Java platform and is very
interesting). For those new languages it may have sense to investigate the available options.
The best reference discussing alternative to parentheses that I know of is a paper by David
Wheeler. It is an interesting reading, you may want to have a look at it, if you are interested in
the topic.

3.2 About the prefix syntax

It is time to say something about another peculiarity of lispish language, the prefix syntax. In
Scheme you do not write 1+1 as you have learned to write from elementary school. Instead,
you write (+ 1 1). The sum operator + is written at the beginning, as a prefix, and not in the
middle, as an infix. I never had any trouble with infix syntax (I had trouble with parens instead)
since it is something perfectly consistent: in Python the function name is written before the
arguments too.

Actually, when you write 1+1 in Python, you should think of it like a shortcut syntax for
the full prefix syntax int.__add__(1,1), therefore the prefix syntax should not come as a
surprise to a Pythonista. I was disturbed by the fact that there is no standard library functionality
in Scheme to simplify the writing of mathematical formulas. I would have welcomed a standard
macro able to convert infix syntax to prefix syntax in mathematical formulas, something like

(with-infix a+b*c) => (+ a (* b c))

Such a macro is standard in Common Lisp, but not in Scheme. Apart from forcing the students
to write a parser to convert infix syntax to prefix syntax, I do not see the advantages of such a

3.2. About the prefix syntax 15

http://www.paulgraham.com/arcll1.html
http://clojure.org
http://www.dwheeler.com/readable/readable-s-expressions.html
http://www.dwheeler.com/readable/readable-s-expressions.html

The Adventures of a Pythonista in Schemeland, Release 0.1

choice. This is however indicative of the difference between Python and Scheme: Python tries
hard to make common tasks easy by providing a large library (the famous batteries included
concept), whereas Scheme does not care.

Probably the real issue is that it is impossible to get consensus in the committee about the size
of the standard library and about what to include in it, but the final result is that user is stuck
with a very small standard library. Anyway, I should say that the standard library was much
smaller before the R6RS, so the situation is improving. Moreover, concrete implementations
often have a lot of useful (but non-portable) libraries.

But let me go back to syntax. It must be noted that the prefix syntax has enourmous advantages
when macros enter the game. The absolute regularity of Scheme/Lisp programs, which are
sequences of s-espressions of the form

(arguments ...)

where the arguments in turn can be nested s-expressions makes the automatic generation of
code extremely effective. I will discuss this point in detail in future episodes; here I can an-
ticipate that Scheme code is not meant to be written by humans, it is intended to be written
automatically by macros. Only after having understood this point you will realize that the
parentheses are a Good Thing (TM). I needed a few months to understand it, others never
understand it and they quit Scheme with disgust.

If you will be able to pass the initiation test you will see that s-expressions (which are usually
but not necessarily associated to parentheses) make sense. Once understood, the traditional
(infix) notation becomes an obstacle more than a help. Moreover the total uniformity of Scheme
programs has a kind of beauty and elegance in itself. No useless syntax, no boilerplate code,
you breath an air of Zen minimalism.

16 Chapter 3. Of parentheses and indentation

CHAPTER

FOUR

SCHEME BIBLIOGRAPHY (AND A
FIRST PROGRAM)

4.1 Scheme resources for beginners

The present series has the ambition to be a nearly self-consistent complement to the R6RS
document. In theory you should be able to learn Scheme by reading my “Adventures” and the
R6RS only. In practice, however, having a look at other sources cannot hurt, so I will discuss
here a few tutorials/textbooks you can find on the net and which are useful for Scheme begin-
ners. There are many good texts, but none focused on my target of readers, i.e. experienced
programmers coming from the scripting language world. I myself am the kind of persons that
prefer learning from tutorials, articles and newsgroups more than from books, therefore I am
not an expert on the existing bibiliografy. Here I will cite only a few resources, readers more
knowledgeable are invited to post their recommendations as comments.

The main reference I used to learn Scheme when I started is Teach Yourself Scheme in Fixnum
Days by Dorai Sitaram, which has many good things going for it. It is a self-consistent tutorial
on Scheme which is very well written, especially for the first part. It is very informative, but
at the same time concise and readable by hobbyist Scheme programmers like myself, i.e. by
people using another language at work and not having too much free time at their disposal (I

17

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html

The Adventures of a Pythonista in Schemeland, Release 0.1

suppose that description fits the majority of my readers). On the other hand, Teach Yourself
Scheme in Fixnum Days is a bit old as a reference, and it completely ignores the modern
Scheme macrology, based on pattern matching. It only describes the traditional macrology
based on define-macro, which many seasoned Schemers do not love. My aim in this series
is to give a description of modern Scheme, updated to the R6RS document; moreover I want to
discuss in detail modern macros.

A more modern text (not covering the R6RS specification anyway) is The Scheme Program-
ming Language (Third Edition) by R. Kent Dybvig. This is a very good book on Scheme in
general. It is also the best reference I have read on syntax-case macros, but it is book with
several hundreds of dense pages, perhaps too much for a hobbyist Schemer.

A very recent book is Programming Languages Application and Interpretation, by Shriram
Krishnamurthi, which is also excellent, especially the part about continuations, but also very
demanding from the reader, since it is a textbook for university students. Notice that even
this book does not cover R6RS (to my knowledge there are no text books covering the R6RS
standard, since it is too recent).

There is a habit of denoting Scheme books with their initials, so the two books I have just cited
are also known as TSPL3 e PLAI; however, the most famous acronymous is certainly SICP, i.e.
Structure and Interpretation of Computer Programs, by Harold Abelson e Gerald Jay Sussman.
This book has been used to teach Scheme to generations of students and it is considered a cult,
but I personally do not know it, therefore I cannot comment. Another book I have not read
but I have heard good things about is How to Design Programs by Fellesein, Findler, Flatt and
Krishnamurthi, which is a textbook for first year college students. It is up to you to check it and
to see if you like it.

As you see, there are plenty of Scheme books, being Scheme a language with a great academical
tradition. The problem is not the lack of books, is the lack of time to read them! This is one
of the reasons why my Adventures are appearing as blog posts and not as a book: a short paper
of 5-6 pages is much less scary than a big book of 500-600 pages. Morevoer blog posts are
allowed to keep a much more informal tone than books, so they are both easier to write and to
read.

4.2 A simple Scheme program

After so much talk, let me show you (finally!) a small example of Scheme program. There is a
long tradition of giving the factional function as an example and I do not see a reason to break
the tradition. Here is the Scheme code:

;; fac.scm for Chicken Scheme
(define (fac x)

(if (= x 0) 1
(* x
(fac (- x 1)))))

(define n (string->number (car (reverse (argv)))))
(display (fac n))

18 Chapter 4. Scheme bibliography (and a first program)

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.scheme.com/tspl3/
http://www.scheme.com/tspl3/
http://www.cs.brown.edu/~{}sk/Publications/Books/ProgLangs/2007-04-26/
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://www.htdp.org/2003-09-26/Book/

The Adventures of a Pythonista in Schemeland, Release 0.1

The equivalent in Python would be:

import sys

def fac(x):
if x == 0:

return 1
else:

return x * fac(x-1)

n = int(sys.argv[-1])
print fac(n),

This trivial example already proves what I have been saying all along:

1. There are lots of parenthesis: five parens at the end of the factorial and four at the end of
the definition of n. A typical program contains 3-4 parens per line. It should be noticed
that all those parens are useless. By using the SRFI-49 the code could have been written
as

define fac
if (= x 0) 1

* x
fac (- x 1)

define n
string->number
car (reverse argv)

display (fac n)

2. The script is fully non-portable; to my knowledge it only works in Chicken Scheme. The
reason is that the R5RS standard DOES NOT SPECIFY any way to read the command
line arguments, hence argv is not standard.

To a Pythonista such a lack looks absurd, but it is only after thirty years that the Schemers
have decided how to manage sys.argv in the R6RS standard, which however is still
little diffused and probably will remain a minority standard for years to come.

3. To get the last element of argv, Python uses the standard syntax argv[-1]; there
is no standard function syntax to do it in Scheme, therefore or you use a non-portable
function, or you reverse the list and you keep the first element with car (if you want to
know the origin of the term you may have a look at this Wikipedia article): this is not

4.2. A simple Scheme program 19

http://en.wikipedia.org/wiki/CAR_and_CDR

The Adventures of a Pythonista in Schemeland, Release 0.1

really readable, but readability never counted much in the Scheme world. Some Scheme
implementations accepts the more readable name first as a synonimous of car, but
this is again not standard.

4. The result of fac depends on the implementation: some implementations support infinite
precision numbers (this is required by the R6RS) but some implementations do not. In
particular in Chicken one gets

$ rlwrap csi
CHICKEN
Version 2.732 - macosx-unix-gnu-x86 [manyargs dload ptables applyhook cross]
(c)2000-2007 Felix L. Winkelmann compiled 2007-11-01 on michele-mac.local (Darwin)
#;1> (define (fac x) (if (= x 0) 1 (* x (fac (- x 1)))))
#;2> (fac 10)
3628800
#;3> (fac 100)
9.33262154439441e+157
#;4> (fac 1000)
+inf

In Ikarus (which is R6RS-compliant) one gets instead:

$ rlwrap ikarus
Ikarus Scheme version 0.0.2
Copyright (c) 2006-2007 Abdulaziz Ghuloum
> (define (fac (x) (if (= x 0) 1 (* x (fac (- x 1))))))
> (fac 10)
3628800
> (fac 100)
93326215443944152681699238856266700490715968
264381621468592963895217599993229915608941463
976156518286253697920827223758251185210916864
000000000000000000000000
> (fac 1000)
4023872600 ... < many many other digits>

After reading these first episodes you may be tempted to quit; I am sure the readers who fol-
lowed me up to this point had this question floating in their minds: is it really worth it?.
Probably for most readers the answer is no. But this series is for the most persistent readers,
and I hope to show them something positive in the next episode. Keep reading and see you next
time!

20 Chapter 4. Scheme bibliography (and a first program)

CHAPTER

FIVE

ABOUT TAIL CALL OPTIMIZATION
(AND THE MODULE SYSTEM)

In order to speak of Scheme performance one needs to write at least a few benchmarks. This is
not completely trivial, for at least a couple of reasons. The first reason is shallow, but it may be
baffling for beginners: since there is no for loop in Scheme, how are we supposed to write a
benchmark, which is usually based on running many times the same instructions and measuring
the total time spent? We will see in a moment that there is an easy solution to this question (use
recursion). On the other hand, there is a second more serious question: since there is no fully
portable way to write a library in Scheme, how can we write a benchmark library? There is no
real answer, so we will restrict ourselves to R6RS-compliant Scheme implementations where
there is a standard concept of library.

5.1 There are no for loops in Scheme

The for loop is missing in Scheme as a primitive construct since it is useless in a language
that guarantees tail call optimization. If you studied the concept of tail call at college you know
what I am talking about; on the other hand, if you forgot it, or if you did study Physics like me,
it is worth spending a couple of words on the subject. The ones who want to know more, may
consult this Wikipedia article.

21

http://en.wikipedia.org/wiki/Tail_call_optimization

The Adventures of a Pythonista in Schemeland, Release 0.1

The important point beyond the tail recursion concept is that it is always possibile to convert a
for into a recursive function in tail call form, i.e. a recursive function returning a value or a
call to itself. For instance, the Python loop:

a loop printing 1 2 3
for i in range(1,4):

print i,

can be converted to a recursive function print_up_to_3:

def print_up_to_3(i):
if i == 4: return
print i,
return print_up_to_3(i+1)

print_up_to_3(1)

Here the last instruction of the function (the tail) is a call to itself, hence the name tail call.

Tail call optimization is guaranteed by the Scheme language. Scheme compilers/interpreters
are able to recognize recursive functions in tail call form and to convert them internally in for
loops. As a consequence, the programmer has no need to write for loops directly: she can just
use recursive function. Our example would look as follows in Scheme:

22 Chapter 5. About tail call optimization (and the module system)

The Adventures of a Pythonista in Schemeland, Release 0.1

(define (print-up-to-3 i)
(unless (= i 4)

(display i) (display " ")
(print-up-to-3 (+ i 1))))

(print-up-to-3 1)

This works, but it is not really readable; to improve the situation Scheme provides a little
syntactic sugar called named let:

(let loop ((i 1))
(unless (= i 4)

(display i) (display " ")
(loop (+ i 1))))

Traditionally the function in the named let construct is called loop to make clear to the pro-
grammer that we are emulating a for loop. In this example loop is exactly equivalent to
print-up-to-3.

Let me point out two things before closing this paragraph:

1. there are other let forms, used to define local variables. The simplest one is let:

> (let ((a 1) (b 2)) (+ a b)) ; => 3

The scope of a and b is limited to the current S-expression/form; if a and b are defined
outside the let form, internally a and b shadow the outer names.

2. there is actually a do loop in the language, but it is cumbersome to use and redundant
because the named let allows you to perform everything do does. I see it as a useless
construct in a language that would like to be minimalist but it is not.

5.2 There is no portable module system

As I have anticipated, libraries are the weak point of Scheme. There are few libraries available
and it is also difficult to write portable ones. The reason is that historically Scheme never had
any standard module system until very recently, with the R6RS document: that means nearly
all current implementations provide different and incompatible module systems.

In order to understand the reason for this serious lack, you must understand the philosophy
behind Scheme, i.e. the so called MIT approach: things must be done well, or not at all.
For thirty years the Scheme community has not been able to converge on a well done single
module system. It is only in 2007 that a standard module system has been blessed by the
Scheme committee: but even that was done with a lot of opposition and there are implementors
who said they will never support R6RS.

As a consequence of history and mentality, if you want to write a library for implementation
X, you need to do a lot of boring and uninspiring work to port the library to implementations
Y, Z, W, ... (there are dozens of different implementations). Moreover, a few implementations

5.2. There is no portable module system 23

http://www.jwz.org/doc/worse-is-better.html

The Adventures of a Pythonista in Schemeland, Release 0.1

do not have a module system at all, so you may be forced to solve name clashes issue by hand,
changing the names of the functions exported by your library, if they shadow names coming
from third party libraries (!)

Personally, I picked up Scheme 5 years ago, but never used it because of the lack of a stan-
dardized module system. The main reason why I have decided to go back to Scheme and to
write this series is the coming of the R6RS document last year. The R5RS standard has lots of
defects, but at least now I can write a library and I can have people using different implemen-
tations install it and use it (nearly) seemlessly.

Since there is some hope for a large diffusion of R6RS module system in the future, I have
decided to use it and to ignore implementations not supporting it. I should notice however that
there are solutions to run R6RS modules on top of R5RS implementations, like the psyntax
package, but I have not tried it, so I cannot comment on its reliability.

As first example of usage of the R6RS module system, I will define a repeat library exporting
a call function which is able to call a procedure n times. Here is the code, that should be
self-explanatory:

(library (repeat)
(export call)
(import (rnrs))

(define (call n proc . args)
(let loop ((i 0))

(when (< i n) (apply proc args) (loop (+ 1 i))))))

The export declaration corresponds to Python’s __all__: only the names listed in export
are exported. In this case we will export only the function (call n proc . args).
Notice the dot in the argument list: that means that the functions accept a variable number
of arguments, which are collected in the list args. In other words, . args is the moral
equivalent of *args in Python, with some difference that we will ignore for the moment. The
apply function applies the argument list to the input procedure proc, which is called many
times until the index i reaches the value n.

(import (rnrs)) imports all the libraries of the current version of the “Revised Report
on Scheme”, i.e. the R6RS report. At the REPL this is automatically done by the system, but
for batch scripts it is mandatory (as Pythonistas say explicit is better than implicit). It is also
possible to import subsections of the whole library. For instance (import (rnrs base))
imports only the base library of the R6RS, (import (rnrs io)) imports only the I/O
libraries, et cetera.

The usage of the libray is trivial: it is enough to put the file repeat.sls somewhere in the
Ikarus search path (specified by the environment variable IKARUS_LIBRARY_PATH). Then,
you can import the library as follows:

$ rlwrap ikarus
Ikarus Scheme version 0.0.2
Copyright (c) 2006-2007 Abdulaziz Ghuloum
> (import (repeat))
> (call 3 display "hello!\n")
hello!

24 Chapter 5. About tail call optimization (and the module system)

http://www.cs.indiana.edu/~{}aghuloum/r6rs-libraries/index.html

The Adventures of a Pythonista in Schemeland, Release 0.1

hello!
hello!

By default (import (repeat)) imports all the names exported by the module repeat,
something that a Pythonista would never do (it is equivalent to a import * from
repeat); fortunately it is possible to list the names to be imported, or to add a custom prefix:

> (import (only (repeat) call)); import only call from repeat
call
#<procedure call>
> (import (prefix (repeat) repeat:)); import all with prefix repeat:
> repeat:call
#<procedure call>

5.3 A simple benchmark

The main advantage of Scheme with respect to Python is the performance. In order to show the
differences in performance I will go back to the factorial example of episode 4. I will compare
the following Python script:

fact.py
import sys, timeit

def fact(x):
if x == 0: return 1
else: return x * fact(x-1)

if __name__ == ’__main__’:
n = int(sys.argv[-1])
t = timeit.Timer(’fact(%d)’ % n, ’from fact import fact’)
print t.repeat(1, number=10000000)
print fact(n)

with the following R6RS-compliant script (written in Ikarus Scheme):

; fact.ss
(import (rnrs) (only (repeat) call) (only (ikarus) time))

(define (fac x)
(if (= x 0) 1

(* x (fac (- x 1)))))

(define n
(string->number (car (reverse (command-line)))))

(time (call 10000000 (lambda () (fac n))))
(display "result:") (display (fac n)) (newline)

5.3. A simple benchmark 25

http://www.artima.com/weblogs/viewpost.jsp?thread=239568

The Adventures of a Pythonista in Schemeland, Release 0.1

I will notice two things:

1. Python manages to compute the factorial of 995, but then it faces the stack wall and it
raises a RuntimeError: maximum recursion depth exceeded whereas
Scheme has no issues whatsoever;

2. In order to compute the factorial of 995 ten thousands times, Python takes 15.2 seconds,
whereas Ikarus takes 7.2 seconds.

Notice that since the factorial of 995 is a large number, the computation time is spent in multi-
plication of large numbers, which are implemented in C. Python has its own implementation of
long integers, whereas Ikarus uses the GNU Multiprecision library (gmp): the times measured
here mean that the gmp implementation of long integers is more efficient than the Python one,
but they say nothing on the relative performances of the two languages. It is more interesting to
see what happens for small numbers. For instance, in order to compute the factorial of 7 for 10
millions of times, Python takes 30.5 seconds, whereas Ikarus takes 3.08 seconds and thus it is
nearly ten times faster than Python. This is not surprising at all, since function calls in Python
are especially slow whereas they are optimized in Scheme. Moreover Ikarus is a native code
compiler.

It means Ikarus’ REPL works by compiling expressions to native code, whereas Python’s REPL
compiles to bytecode. The technology is called incremental compilation and it is commonly
used in Lisp languages from decades, even if it may look futuristic for C/C++ programmers.
The factorial example is not very practical (on purpose), but it is significant, in the sense that it is

26 Chapter 5. About tail call optimization (and the module system)

http://gmplib.org/
http://gmplib.org/
http://en.wikipedia.org/wiki/REPL

The Adventures of a Pythonista in Schemeland, Release 0.1

legitimate to expect good performances from Scheme compilers. The fastest Scheme compiler
out there is Stalin, but I would not recommend it to beginners.

The next episodes will be devoted to the dangers of benchmarks, do not miss it!

5.3. A simple benchmark 27

http://community.schemewiki.org/?Stalin

The Adventures of a Pythonista in Schemeland, Release 0.1

28 Chapter 5. About tail call optimization (and the module system)

CHAPTER

SIX

THE DANGER OF BENCHMARKS

Benchmarks are useful in papers and blog posts, as a good trick to attract readers, but you
should never make the mistake of believing them: as Mark Twain would say, there are lies,
damned lies, and benchmarks. The problem is not only that reality is different from bench-
marks; the problem is that it is extremely easy to write a wrong benchmark or to give a wrong
interpretation of it.

In this episode I will show some of the dangers hidden under the factorial benchmark shown in
the previous episode, which on the surface looks trivial and unquestionable. If a benchmark so
simple is so delicate, I leave to your imagination to figure out what may happen for complex
benchmarks.

The major advantage of benchmarks is that they make clear how wrong we are when we think
that a solution is faster or slower than another solution.

6.1 Beware of wasted cycles

An obvious danger of benchmarks is the issue of vasted cycles. Since usually benchmarks
involve calling a function N times, the time spent in the loop must be subtracted from the real
computation time. If the the computation is complex enough, usually the time spent in the loop
is negligible with respect to the time spent in the computation. However, there are situations

29

http://www.artima.com/weblogs/viewpost.jsp?thread=239699

The Adventures of a Pythonista in Schemeland, Release 0.1

where this assumption is not true.

In the factorial example you can measure the wasted cycles by subtracting from the total time
the the time spent in the loop performing no operations (for instance by computing the factorial
of zero, which contains no multiplications). On my MacBook the total time spent in order to
compute the factorial of 7 for ten millions of times is 3.08 seconds, whereas the time spent to
compute the factorial of zero is 0.23 seconds, i.e. fairly small but sensible. In the case of fast
operations, the time spent in the loop can change completely the results of the benchmark.

For instance, add1 it is a function which increments a number by one and it is extremely fast.
The time to sum 1+1 ten millions of times is 0.307 seconds:

> (time (call 10000000 add1 1))
running stats for (call 10000000 add1 1):

no collections
307 ms elapsed cpu time, including 0 ms collecting
308 ms elapsed real time, including 0 ms collecting
24 bytes allocated

If you measure the time spent in the loop and in calling the auxiliary function call, by timing
a do-nothing function, you will find a value of 0.214 seconds, i.e. 2/3 of the total time is
wasted:

> (define (do-nothing x) x)
> (time (call 10000000 do-nothing 1))
running stats for (call 10000000 do-nothing):

no collections
214 ms elapsed cpu time, including 0 ms collecting
216 ms elapsed real time, including 0 ms collecting
16 bytes allocated

Serious benchmarks must be careful in subtracting the wasted time correctly, if it is significant.
The best thing is to reduce the wasted time. In a future episode we will consider this example
again and we will see how to remove the time wasted in call by replacing it with a macro.

30 Chapter 6. The danger of benchmarks

The Adventures of a Pythonista in Schemeland, Release 0.1

6.2 Beware of cheats

The issue of wasted cycles is obvious enough; on the other hand, benchmarks are subject
to less obvious effects. Here I will show a trick to improve dramatically the performance
by cheating. Let us consider the factorial example, but using the Chicken Scheme compiler.
Chicken works by compiling Scheme code into C code which is then compiled to machine
code. Therefore, Chicken may leverage on all the dirty tricks on the underlying C compiler. In
particular, Chicken exposes a benchmark mode where consistency checks are disabled and the
-O3 optiomization of gcc is enabled. By compiling the factorial benchmark in in this way you
can get incredible performances:

$ csc -Ob fact.scm # csc = Chicken Scheme Compiler
$./fact 7
./fact 7
0.176 seconds elapsed

0 seconds in (major) GC
0 mutations
1 minor GCs
0 major GCs

result:5040

6.2. Beware of cheats 31

http://www.phyast.pitt.edu/~{}micheles/scheme/fact.scm

The Adventures of a Pythonista in Schemeland, Release 0.1

We are 16 times faster than Ikarus and 173 times faster than Python! The only disadvantage is
that the script does not work: when the factorial gets large enough (biggen than 2^31) Chicken
(or better gcc) starts yielding meaningless values. Everything is fine until 12!:

$./fact 12 # this is smaller than 2^31, perfectly correct
0.332 seconds elapsed

0 seconds in (major) GC
0 mutations
1 minor GCs
0 major GCs

result:479001600

Starting from 13! you get a surprise:

$./fact 13 # the correct value is 6227020800, larger than 2^31
0.352 seconds elapsed

0 seconds in (major) GC
0 mutations
1 minor GCs
0 major GCs

result:-215430144

You see what happens when you cheat? ;)

6.3 Beware of naive optimization

In this last section I will show a positive aspect of benchmarks: they may be usefully employed
to avoid useless optimizations. Generally speaking, one should not try to optimize too much,
since one could waste work and get the opposite effect, especially with modern compilers which
are pretty smart.

In order to give an example, suppose we want to optimize by hand the factorial benchmark, by

32 Chapter 6. The danger of benchmarks

http://www.phyast.pitt.edu/~{}micheles/scheme/fact.scm

The Adventures of a Pythonista in Schemeland, Release 0.1

replacing the closure (call 10000000 (lambda () (fac n))) with the expression
(call 10000000 fac n). In theory we would expect a performance improvement since
we can skip an indirection level by calling directly fac instead of a closure calling fac.
Actually, this is what happens with: for n=7, the program runs in 3.07 secondi with the closure
and in 2.95 seconds without.

In Chicken - I am using Chicken 2.732 here - instead, a disaster happens when the benchmark
mode is turned on:

$ csc -Ob fact.scm
$./fact 7

1.631 seconds elapsed
0.011 seconds in (major) GC

0 mutations
1881 minor GCs
23 major GCs

result:5040

The program is nearly ten times slower! All the time is spent in the garbage collector. Notice
that this behavior is proper of the benchmark mode: by compiling with the default options you
will not see significant differences in the execution time, even if they are in any case much
larger (7.07 seconds with the closure versus 6.88 seconds without). In other words, with the
default option to use the closure has a little penalty, as you would expect, but in benchmark
mode the closure improves the performance by ten times! I asked for an explation to Chicken’s
author, Felix Winkelmann, and here is what he said:

In the first case, the compiler can see that all references to fac are call sites: the value of “fac”
is only used in positions where the compiler can be absolutely sure it is a call. In the second
case the value of fac is passed to “call” (and the compiler is not clever enough to trace the
value through the execution of “call” - this would need flow analysis). So in the first case, a
specialized representation of fac can be used (“direct” lambdas, i.e. direct-style calls which
are very fast).

Compiling with “-debug o” and/or “-debug 7” can also be very instructive.

That should make clear that benchmarks are extremely delicate beasts, where (apparently) in-
significant changes may completely change the numbers you get. So, beware of benchmarks,
unless you are a compiler expert (and in that case you must be twice as careful! ;)

6.4 Recursion vs iteration

Usually imperative languages do not support recursion too well, in the sense that they may have
a recursion limit, as well as inefficiencies in the management of the stack. In such a languages
it is often convenient to convert ricorsive problems into iterative problems. To this aim, it is
convenient to rewrite first the recursive problem in tail call form, possibly by adding auxiliary
variables working as accumulators. At this point, the rewritin as a while loop is trivial. For
instance, implementing the factorial iteratively in Python has serious advantages: if you run the
script

6.4. Recursion vs iteration 33

The Adventures of a Pythonista in Schemeland, Release 0.1

fact_it.py
import sys, timeit

def fact(x):
acc = 1
while x > 0:

acc *= x
x -= 1

return acc

if __name__ == ’__main__’:
n = int(sys.argv[-1])
t = timeit.Timer(’fact(%d)’ % n, ’from fact_it import fact’)
print t.repeat(1, number=10000000)
print fact(n)

you will see a speed-up of circa 50% with respect to the recursive version for “small” numbers.
Alternatively, you can get an iterative version of the factorial as reduce(operator.mul,
range(1, n+1). This was suggested by Miki Tebeka in a comment to the previous episode
and also gives a sensible speedup. However notice that reduce is not considered Pythonic
and that Guido removed it from the builtins in Python 3.0 - you can find it in functools
now.

If you execute the equivalent Scheme code,

(import (rnrs) (only (ikarus) time) (only (repeat) call))

(define (fac x acc)
(if (= x 0) acc

(fac (- x 1) (* x acc))))

(define n
(string->number (car (reverse (command-line)))))

(time (call 10000000 (lambda () (fac n 1))))
(display "result:") (display (fac n 1)) (newline)

you will discover that it is slightly slower than the non tail-call version (the tail-call requires
less memory to run, anyway). In any case we are an order of magnituder over Python efficiency.
If we consider benchmarks strongly dependent on function call efficiency, like the Fibonacci
benchmark of Antonio Cangiano, the difference between Python and Scheme is even greater:
on my tests Ikarus is thirty times faster than Python. Other implementations of Scheme or other
functional languages (ML, Haskell) can be even faster (I tried the SML/NJ implementation,
which is forty times faster than Python 2.5). Of course those benchmarks have no meaning.
With benchmarks one can prove that Python is faster than Python is faster than Fortran and
C++ in matrix computations. If you do not believe it, please read this ;)

That’s all folks, see you next episode!

34 Chapter 6. The danger of benchmarks

http://antoniocangiano.com/2007/11/28/holy-shmoly-ruby-19-smokes-python-away/
http://antoniocangiano.com/2007/11/28/holy-shmoly-ruby-19-smokes-python-away/
http://matrixprogramming.com/MatrixMultiply/

CHAPTER

SEVEN

SYMBOLS AND LISTS

In this episode I pave the way to the heart of Lisp, i.e. to the famous code is data concept. In
order to do that, I will have to introduce two fundamental data types first: symbols and lists.

7.1 Symbols

Scheme and Lisp have a particular data type which is missing in most languages (with the
exception of Ruby): the symbol.

From the grammar point of view, a symbol is just a quoted identifier, i.e. a sequence of charac-
ters corresponding to a valid identifier preceded by a quote. For instance, ’a, ’b1 e ’c_ are
symbols. On the set of symbols there is an equality operator eq? which is able to determine if
two symbols are the same or not:

> (define sym ’a)
> (eq? sym ’b)
#f
> (eq? sym ’a)
#t

#f e #t are the Boolean values False and True respectively, as you may have imagined. The
equality operator is extremely efficient on symbols, since the compiler associates to every sym-
bol an integer number (this operation is called hashing) and stores it in an interal registry (this
operation is called interning): when the compiler checks the identity of two symbols it actually
checks the equality of two integer numbers, which is an extremely fast operation.

You may get the number associated to a symbol with the function symbol-hash:

> (symbol-hash sym)
117416170
> (symbol-hash ’b)
134650981

35

The Adventures of a Pythonista in Schemeland, Release 0.1

> (symbol-hash ’a)
117416170

It is always possible to convert a string into a symbol and viceversa thanks to the functions
string->symbol and symbol->string, however conceptually - and also practically -
symbols in Scheme are completely different from strings.

The situation is not really different in Python. It is true that symbols do not exist as a primitive
data type, however strings corresponding to names of Python objects are actually treated as
symbols. You can infer this from the documentation about the builtin functions hash e intern,
which says: normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. BTW, if you
want to know exactly how string comparison works in Python I suggest you to look at this post:

Scheme has much more valid identifiers than Python or C, where the valid characters are re-
stricted to a-zA-Z-0-9_ (I am ignoring the possibility of having Unicode characters in iden-
tifiers, which is possible both in R6RS Scheme and Python 3.0). By convention, symbols
ending by ? are associated to boolean values or to boolean-valued functions, whereas symbols
ending by ! are associated to functions or macros with side effects.

The function eq?, is polymorphic and works on any kind of object, but it may surprise you
sometimes:

> (eq? "pippo" "pippo")
#f

The reason is that eq? (corrisponding to is in Python) checks if two objects are the same
object at the pointer level, but it does not check the content. Actually, Python works the same.
It is only by accident than "pippo" is "pippo" returns True on my machine, since the
CPython implementation manages differently “short” strings from “long” strings:

>>> "a"*10 is "a"*10 # a short string
True
>>> "a"*100 is "a"*100 # a long string
False

If you want to check if two objects have the same content you should use the function equal?,
corresponding to == in Python:

> (equal? "pippo" "pippo")
#t

It you know the type of the objects you can use more efficient equality operators; for instance
for strings you can use string=? and for integer numbers =:

> (string=? "pippo" "pippo")
#t

> (= 42 42)
#t

36 Chapter 7. Symbols and lists

http://docs.python.org/lib/built-in-funcs.html#l2h-36
http://docs.python.org/lib/non-essential-built-in-funcs.html#l2h-90
http://groups.google.com/group/comp.lang.python/msg/f9d56d969572f2e1

The Adventures of a Pythonista in Schemeland, Release 0.1

To be entirely accurate, in addition to eq and equal, Scheme also provides a third equality
operator eqv?. eqv? looks to me like an useless complication of the language, so I will not
discuss it. If you are interested, you can read what the R6RS document says about it.

7.2 Lists

The original meaning of LISP was List Processing, since lists were the fundamental data type of
the language. Nowadays Lisp implements all possible data types, but still lists have a somewhat
privileged position, since lists can describe code. A Lisp/Scheme list is a recursive data type
such that:

1. the list is empty: ’()

2. the list is the composition of an element and a list via the cons operation (cons stands
for constructor): (cons elem lst).

For instance, one-element lists are obtained as composition of an element with the empty list:

> (cons ’x1 ’()); one-element list
(x1)

Two-elements lists are obtained by composing an element with a one-element list:

> (cons ’x1 (cons ’x2 ’())); two-element list
(x1 x2)

That generalizes to N-element lists:

> (cons ’x1 (cons ’x2 (cons ’x3 (cons ’xN ’()))) ...)
(x1 x2 x3 ... xN)

For simplicity, the language provides an N-ary list constructor list

> (list x1 x2 x3 ... xN)
(x1 x2 x3 ... xN)

but the expression (list x1 ... xN) is nothing else than syntactic sugar for the fully
explicit expression in terms of constructors.

There are also the so-called improper lists, i.e. the ones where the second argument of the
cons is not a list. In that case the representation of the list displayed at the REPL contains a
dot:

> (cons ’x1 ’x2) ; improper list
(x1 . x2)

7.2. Lists 37

http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-14.html#node_idx_428
http://www.acronymfinder.com/af-query.asp?acronym=LISP

The Adventures of a Pythonista in Schemeland, Release 0.1

It is important to remember that improper lists are not lists, therefore operations like map,
filter and similar do not work on them.

As we anticipated in episode 4, the first element of a list (proper or improper) can be extracted
with the function car; the tail of the list instead can be extracted with the function cdr. If the
list is proper, its cdr is proper:

> (cdr (cons ’x1 ’x2))
x2

> (cdr (cons ’x1 (cons ’x2 ’())))
(x2)

At low level Scheme lists are implemented as linked list, i.e. as couples (pointer-to-sublist,
value) until you arrive at the null pointer.

7.3 Some example

To give an example of how to build Scheme lists, here I show you how you could define a
range function analogous to Python range. Here are the specs:

> (range 5); one-argument syntax
(0 1 2 3 4)
> (range 1 5); two-argument syntax
(1 2 3 4)
> (range 1 10 2); three-argument syntax
(1 3 5 7 9)
> (range 10 0 -2); negative step
(10 8 6 4 2)
> (range 5 1); meaningless range
()

Here is the implementation:

38 Chapter 7. Symbols and lists

http://www.artima.com/weblogs/viewpost.jsp?thread=239568

The Adventures of a Pythonista in Schemeland, Release 0.1

(define range
(case-lambda

((n); one-argument syntax
(range 0 n 1))

((n0 n); two-argument syntax
(range n0 n 1))

((n0 n s); three-argument syntax
(assert (and (for-all number? (list n0 n s)) (not (zero? s))))
(let ((cmp (if (positive? s) >= <=)))
(let loop ((i n0) (acc ’()))

(if (cmp i n) (reverse acc)
(loop (+ i s) (cons i acc))))))))

Here case-lambda is a syntactic form that allows to define functions with different be-
havior according to the number of arguments. for-all is an R6RS higher order function:
(for-all pred lst) applies the predicate pred to the elements of list lst, until a false
value is found - in that case it returns #f - otherwise it returns #t. Here the assertion checks at
runtime that all the passed arguments n0, n and s are numbers, with s non-zero.

The first let defines a comparison function cmp which is >= if the step s is positive, or <=
if the step s is negative. The reason is clear: if s is positive at some point the index i will get
greater than n, whereas if s is negative at some point i will get smaller than n.

The trick used in the loop is extremely common: instead of modifying a pre-existing list, at
each iteration a new list is created ex-novo by adding an element (cons i acc); at the end
the accumulator is reversed (reverse acc). The same happens for the counter i which is
never modified.

This is an example of functional loop; imperative loops based on mutation are considered bad
style in Scheme and other functional languages. Notice by contrast that in Common Lisp
imperative loops are perfectly acceptable and actually there is a very advanced LOOP macro
allowing you to do everything with imperative loops.

Actually, the range function defined here is more powerful than Python’s range, since it
also works with floating point numbers:

> (range 1.3 2.5 .25)
(1.3 1.55 1.8 2.05 2.3)

As always, the only way to really get Scheme lists is to use them. I suggest you try the following
exercises:

1. implement an equivalent of Python enumerate for Scheme lists;

2. implement an equivalent of Python zip for Scheme lists.

I will show the solutions in the next episode. If you are lazy and you want an already written
list library, I suggest you to give a look at the SRFI-1 library, which is very rich and available
practically in all Scheme implementations. Many of the SRFI-1 features are built-in in the
R6RS standard, but many other are still available only in the SRFI-1 .

7.3. Some example 39

http://www.ai.sri.com/pkarp/loop.html
http://www.python.org/doc/lib/built-in-funcs.html#l2h-24
http://www.python.org/doc/lib/built-in-funcs.html#l2h-81
http://srfi.schemers.org/srfi-1/srfi-1.html
http://srfi.schemers.org/srfi-1/srfi-1.html
http://srfi.schemers.org/srfi-1/srfi-1.html

The Adventures of a Pythonista in Schemeland, Release 0.1

40 Chapter 7. Symbols and lists

CHAPTER

EIGHT

QUOTING AND QUASI-QUOTING

In this episode I will explain the meaning of the “code is data” concept. To this aim I discuss the
quoting operation which allows to convert a code fragment into a list of symbols and primitive
values - i.e. it converts code into data. Then, I discuss the issue of evaluating data as code.

8.1 Quoting

A distinguishing feature of the Lisp family of languages is the existence of a quoting operator
denoted with a quote ’ or with (quote), the first form being syntactic sugar for the second.
The quoting operator works as follows:

1. on primitive values such as numbers, literal strings, symbols, etc, it works as an identity
operator:

> ’1
1
> ’"hello"
"hello"
> ’’a
’a

1. expressions are converted into lists; for instance ’(display "hello") is the list

> (list ’display ’"hello")
(display "hello")

whereas ’(let ((x 1)) (* 2 x)) is the list

> (list ’let (list (list ’x ’1)) (list ’* ’2 ’x))
(let ((x 1)) (* 2 x))

et cetera.

Hence every Scheme/Lisp program admits a natural representation as a (nested) list of symbols
and primitive values: code is data. On the other hand, every nested list of symbols and primitive

41

The Adventures of a Pythonista in Schemeland, Release 0.1

values corresponding to a syntactically valid Scheme/Lisp programs can be executed, both
at runtime - with eval - or at compilation time - through macros. The consequences are
fascinating: since every program is a list, it is possible to write programs that, by building
lists, build other programs. Of course, you can do the same in other languages: for instance in
Python you can generate strings corresponding to valid source code and you can evaluate such
strings with various mechanisms (eval, exec, __import__, compile, etc). In C/C++
you can generate a string, save it into a file and compile it to a dynamic library, then you can
import it at runtime; you also have the mechanism of pre-processor macros at your disposal for
working at compile time. The point is that there is no language where code generation is as
convenient as in Scheme/Lisp where it is buil-in, thanks to s-expressions or, you wish, thanks
to parenthesis.

8.2 Quasi-quoting

In all scripting languages there is a form of string interpolation; for instance in Python you can
write

def say_hello(user):
return "hello, %(user)s" % locals()

In Scheme/Lisp, there is also a powerful form of list interpolation:

> (define (say-hello user)
‘("hello" ,user))

> (say-hello "Michele")
("hello" "Michele")

The backquote or (quasiquote) syntax ‘ introduces a list to be interpolated (template); it
is possible to replace some variables within the template, by prepending to them the unquoting
operator (unquote) or ,, denotated by a comma. In our case we are unquoting the user
name, ,user. The function say-hello takes the user name as a string and returns a list
containing the string "hello" together with the username.

There is another operator like unquote, called unquote-splicing or comma-at and writ-
ten ,@, which works as follows:

> (let ((ls ’(a b c))) ‘(func ,@ls))
(func a b c)

In practice ,@ls “unpacks” the list ls into its components: without the splice operator we
would get:

> (let ((ls ’(a b c))) ‘(func ,ls))
(func (a b c))

The power of quasiquotation stands in the code/data equivalence: since Scheme/Lisp code is
nothing else than a list, it is easy to build code by interpolating a list template. For instance,

42 Chapter 8. Quoting and quasi-quoting

The Adventures of a Pythonista in Schemeland, Release 0.1

suppose we want to evaluate a Scheme expression in a given context, where the contexts is
given as a list of bindings, i.e. a list names/values:

(eval-with-context ’((a 1)(b 2) (c 3))
’(* a (+ b c)))

How can we define eval-with-context? The answer is by eval-uating a template:

(define (eval-with-context ctx expr)
(eval ‘(let ,ctx ,expr) (environment ’(rnrs))))

Notice that eval requires a second argument that specifies the language known by the inter-
preter; in our case we declared that eval understands all the procedures and macros of the
most recent RnRS standard (i.e. the R6RS standard). The environment specification has the
same syntax of an import, since in practice it is the same concept: it is possible to specify
user-defined modules as the eval environment. This is especially useful if you have security
concerns, since you can run untrusted code in a stricter and safer subset of R6RS Scheme.

eval is extremely powerful and sometimes it is the only possible solution, in particular when
you want to execute generic code at runtime, i.e. when you are writing an interpreter. However,
often you only want to execute code known at compilation time: in this case the job of eval
can be done more elegantly by a macro. When that happens, in practice you are writing a
compiler.

8.2. Quasi-quoting 43

The Adventures of a Pythonista in Schemeland, Release 0.1

8.3 Programs writing programs

Once you realize that code is nothing else than data, it becomes easy to write programs taking
as input source code and generating as output source code, i.e. it is easy to write a compiler.
For instance, suppose we want to convert the following code fragment

(begin
(define n 3)
(display "begin program\n")
(for i from 1 to n (display i)); for is not defined in R6RS
(display "\nend program\n"))

which is not a valid R6RS program into the following program, which is valid according to the
R6RS standard:

(begin
(define n 3)
(display "begin program\n")
(let loop ((i 1)) ; for loop expanded into a named let

44 Chapter 8. Quoting and quasi-quoting

The Adventures of a Pythonista in Schemeland, Release 0.1

(unless (>= i n) (display i) (loop (add1 i))))
(display "\nend program\n")))

begin is the standard Scheme syntax to group multiple expressions into a single expression
without introducing a new scope (you may introduce a new scope with let) and preserving
the evaluation order (in most functional languages the evaluation order is unspecified).

More in general, we want to write a script which is able to convert

(begin (begin
(expr1 ...) (expr1’ ...)
(expr2 ...) --> (expr2’ ...)
... ...
(exprN ...)) (exprN’ ...))

where the expressions may be of kind for or any other kind not containing a subexpression of
kind for. Such a script can be thought of as a preprocessor expanding source code from an
high level language with a primitive for syntax into a low level language without a primitive
for. Preprocessors of this kind are actually very primitive compilers, and Scheme syntax was
basically invented to make the writing of compilers easy.

In this case you can write a compiler expanding for expressions into named lets as follows:

(import (rnrs) (only (ikarus) pretty-print))

;; a very low-level approach
(define (convert-for-into-loop begin-list)

(assert (eq? ’begin (car begin-list)))
‘(begin

,@(map (lambda (expr)
(if (eq? ’for (car expr)) (apply convert-for (cdr expr)) expr))

(cdr begin-list))))

; i1 is subject to multiple evaluations, but let’s ignore the issue
(define (convert-for i from i0 to i1 . actions)

;; from must be ’from and to must be ’to
(assert (and (eq? ’from from) (eq? ’to to)))
‘(let loop ((i ,i0))

(unless (>= i ,i1) ,@actions (loop (+ i 1)))))

(pretty-print
(convert-for-into-loop
’(begin

(define n 3)
(display "begin program\n")
(for i from 1 to n (display i))
(display "\nend program\n"))))

Running the script you will see that it replaces the for expression with a named let indeed. It is
not difficult to extend the compiler to make it able to manage sub-expressions (the trick is to use

8.3. Programs writing programs 45

The Adventures of a Pythonista in Schemeland, Release 0.1

recursion) and structures more general than begin: but I leave that as an useful exercise. In a
future episode I will talk of code-walkers and I will discuss how to convert generic source code.
In general, one can convert s-expression based source code by using an external compiler, as we
did here, or by using the built-in mechanism provided by Scheme macros. Scheme macros are
particularly powerful, since they feature extremely advanced pattern matching capabilities: the
example I have just given, based on the primitive list operations car/cdr/map is absolutely
primitive in comparison.

The next episode will be entirely devoted to macros. Don’t miss it!

8.4 Appendix: solution of the exercises

In the latest episode I asked you to write an equivalent (for lists) of Python built-ins
enumerate and zip. Here I give my solutions, so you may check them with yours.

Here the equivalent of Python enumerate:

(define (py-enumerate lst)
(let loop ((i 0) (ls lst) (acc ’()))
(if (null? ls) (reverse acc)

(loop (+ 1 i) (cdr ls) (cons ‘(,i ,(car ls)) acc)))))

and here is an example of usage:

> (py-enumerate ’(a b c))
((0 a) (1 b) (2 c))

Here is the equivalent of Python zip:

(define (zip . lists)
(apply map list lists))

Here is an example of usage:

> (zip ’(0 a) ’(1 b) ’(2 c))
((0 1 2) (a b c))

Notice that zip works like the transposition operation in a matrix: given the rows, it returns
the columns of the matrix.

46 Chapter 8. Quoting and quasi-quoting

CHAPTER

NINE

INTRODUCTION TO
(SWEET-)MACROS

This episode is entirely devoted to Scheme macros from a personal point of view. Pattern
matching is introduced as the fundamental mechanism on which macros are built.

9.1 A minimal introduction to Scheme macros

Scheme macros have many faces. You can see them as a general mechanism to extend the
syntax of base Scheme, and also as a mechanism to reduce boilerplate. On the other hand,
if you focus your attention on the fact that they work at compile time, you can see them as a
mechanism to perform arbitrary computations at compile time, including compile time checks.

I think the correct way of looking at macros is to see them as a general facility to write com-
pilers for micro-languages - or Domain Specific Languages, DSL - embedded in the Scheme
language. The languages defined through macros can be very different from Scheme; for in-
stance you can define object oriented languages (object systems such as TinyCLOS or Swindle
are typical examples) or even languages with static typing (the new language Typed Scheme,
built on top of PLT Scheme, is such an example).

In order to address such use cases, Scheme macros have to be extremely advanced, much more
than Lisp macros and any other kind of macros I know of; as a consequence, they also have a
reputation for complexity. Unfortunately, on top of the intrinsic complexity, Scheme macros
also suffers from accidental complexity, due to history (there are too many standard macro
systems) and to the tradition of not caring about readability (many Scheme constructs are made
to look more complex than they actually are).

Scheme has two macro systems included in the de jure standard - syntax-rules, which
allows to define hygienic macros only, and syntax-case, which has the full power of Lisp
macros and much more - plus a de facto standard based on define-macro system, which is
available in all implementations and it is well known to everybody because of its strict similarity
to Common Lisp defmacro system.

47

https://launchpad.net/r6rs-clos
http://www.barzilay.org/Swindle/
http://www.ccs.neu.edu/home/samth/typed-scheme/

The Adventures of a Pythonista in Schemeland, Release 0.1

9.2 Which macrology should I teach?

Since there are so many macro systems it is difficult to decide from where to start in a peda-
gogical paper or tutorial. If you look at the original Italian version of this paper, you will see
that I did talk about syntax-rules macros first. However, after a lot of thinking, I have
decided to go my own way in this English series of the Adventures. Here I will not discuss
syntax-rules, nor I will discuss syntax-case: instead, I will discuss my own version
of Scheme macros, which I called sweet-macros.

Why I am doing that? After all, why my readers should study my own version of macros when
they surely will be better served off by learning the standard macrology used by everybody? I
have spent years debating with myself this very question, but at the end I have decided to go
this way for a series of reasons:

1. I regard the existence of two separate macro systems in the same standard as a wart of
Scheme and as a mistake made by the R6RS editors: they should have included in the
language syntax-case only, leaving syntax-rules as a compatibility library built
on top of syntax-case;

2. I really don’t like the syntax-case syntax, it is by far too verbose and unreadable; I
find there is a strong need for some sugar on top of it and that is what sweet-macros
are for;

3. sweet-macros are very close to syntax-case macros, so once you under-
stand them you will understand syntax-case too; from there, understanding
syntax-rules is a breeze;

4. starting from sweet-macros is much better from pedagogical purposes, especially for
readers with a Common Lisp background, since it is easy to explain the relation with
defmacro and the hygiene issue;

5. my target readers are programmers coming from the scripting languages
(Perl/Python/Ruby) world. For this kind of public, with no previous exposition to
Scheme, bare syntax-case is just too hard, so I needed to dress it in nice clothes to
make it palatable;

6. sweet-macros are intended to easier to use than syntax-case macros, but they are
also more powerful, since they provide introspection and debugging capabilities as well
as guarded patterns, so they should look attractive to experienced users too; however, this
is a nice side effect and not the main motivation for the library;

7. sweet-macros were written expressely for this series of papers, since I did not want
to litter my explanation of Scheme macros with endless rants. So, I took action and
I wrote my own library of macros made “right”: this is also a tribute to the power of
Scheme macros, since you can “fix” them from within the standard macro framework in
fifty lines of code.

If you are an advanced reader, i.e. a Schemer knowing syntax-case/syntax-rules
or a Lisper knowing defmacro, I a am sure you will ask yourself what are the differences
of sweet-macros with respect to the system you know. I will make a comparison of the

48 Chapter 9. Introduction to (sweet-)macros

The Adventures of a Pythonista in Schemeland, Release 0.1

various systems in the future, in episode #12 and later on. For the moment, you will have to
wait. I do not want to confuse my primary target of readers by discussing other macro systems
right now. I also defer to episode #12 the delicate question are macros a good idea?. For the
moment, focus on what macros are and how you can use them. Then you will decide if they
are a good idea or not.

9.3 Enter sweet-macros

My sweet-macros library is a small wrapper around the syntax-case macro system. I re-
lease it under a liberal BSD licence. You can do whatever you want with it, just keep the
attribution right.

The primary goal of sweet-macros is semplicity, so it only exports three macros,
def-syntax, syntax-match and syntax-expand:

• def-syntax is a macro used to define simple macros, which is similar to defmacro,
but simpler and strictly more powerful.

• syntax-match is a macro used to define complex macro transformers. It is imple-
mented as a thin layer of sugar on top of syntax-case.

• syntax-expand is a macro which acts as a debugging facility to expand macros de-
fined via def-syntax or syntax-match.

9.3. Enter sweet-macros 49

http://www.phyast.pitt.edu/~{}micheles/scheme/sweet-macros.zip
http://www.phyast.pitt.edu/~{}micheles/scheme/sweet-macros.zip

The Adventures of a Pythonista in Schemeland, Release 0.1

It should be mentioned that standard Scheme macros do not provide debugging and/or in-
trospection facilities and that every implementation provides different means of debugging
macros. This is unfortunate, since debugging macros is usually difficult and it is done of-
ten, since it is uncommon to get a macro right the first time, even if you are an experienced
developer.

I wanted to provide my readers with the tools to understand what they are doing, without
relying on the details of the implementation they are using. Therefore macros defined via
syntax-match (and that includes macros defined via def-syntax) provide out of the box
introspection and debugging features.

Of course, readers who want to rely on the debugging tools of their implementation can do so;
for instance I hear that DrScheme has a pretty good macro stepper but I have not tried it since
I am an Emacs-addict.

First of all, you should download and install the right sweet-macros library. Unfortunately
the R6RS module system does not really solve the portability issue (to my endless frustration)
so I had to write different versions of the same library :-(I you are using Ikarus you should
download the single file version of the library

$ wget http://www.phyast.pitt.edu/~micheles/scheme/sweet-macros.sls

and put it everywhere in you IKARUS_LIBRARY_PATH. If you are using PLT Scheme (you
need a version of PLT newer than 4.0 for R6RS support) you must download the zip file version

$ wget http://www.phyast.pitt.edu/~micheles/scheme/sweet-macros.zip
$ unzip sweet-macros.zip
$ mv sweet-macros <your collects directory>

and install it in your collects directory, which on my machine is
$HOME/.plt-scheme/4.0/collects.

Actually, the multifile version of the library works also with Ikarus if you have a recent enough
version (right now I am using the trunk, version 0.0.3+, revision 1654). I have not tried the
library on Larceny; I have tried it in Ypsilon Scheme which however has a small bug so that
it does not run there (the bug is already fixed in the trunk). You should always keep in mind
than R6RS implementations are pretty young and that implementors are still working to make
them really compatible. I have also prepared an R5RS version which should work in Chicken
Scheme, at least in the interpreter:

$ wget http://www.phyast.pitt.edu/~micheles/scheme/sweet-macros.scm

However I have developed and tested sweet-macros in Ikarus only (caveat emptor!). Still,
since the title of this blog is The Explorer, I think it is fine if we deal with exploratory code.

You can check that the installation went well by importing the library:

$ ikarus
> (import (sweet-macros))

and by trying to define a macro.

50 Chapter 9. Introduction to (sweet-)macros

http://portal.acm.org/citation.cfm?id=1289971.1289994

The Adventures of a Pythonista in Schemeland, Release 0.1

9.4 An example: multi-define

Here is a multi-define binding construct which allows to define many identifiers at once:

(def-syntax (multi-define (name ...) (value ...))
#’(begin (define name value) ...))

As you see, Scheme macros are based on pattern matching: we are giving instructions to the
compiler, specifying how it must acts when it sees certain patterns. In our example, when
the compiler sees a multi-define expression followed by two sequences with zero o more
arguments, it must replace it with a begin expression containing a sequence of zero or more
definitions. You can check that this is exactly what happens by means of syntax-expand:

> (syntax-expand (multi-define (a b) (1 2)))
(begin (define a 1) (define b 2))

Notice that (multi-define () ()) is valid code expanding to a do-nothing (begin)
expression; if you want to reject this corner case, you should write your macro as

(def-syntax (multi-define (name1 name2 ...) (value1 value2 ...))
#’(begin (define name1 value1) (define name2 value2) ...))

so that multi-define requires one or more arguments. However, it is often useful to
accept degenerate corner cases, because they may simplify automatic code generation (i.e.
multi-define could appear in the expansion of another macro).

multi-define works as you would expect:

> (multi-define (a b) (1 2)) ; introduce the bindings a=1 and b=2
> a
1
> b
2

I have just scratched the surface of Scheme macros here: I leave the rest for the next episode,
don’t miss it!

9.4. An example: multi-define 51

http://en.wikipedia.org/wiki/Pattern_matching

The Adventures of a Pythonista in Schemeland, Release 0.1

52 Chapter 9. Introduction to (sweet-)macros

CHAPTER

TEN

FEATURES OF (SWEET-)MACROS

Yet another episode fully devoted to macros. I will discuss introspection, guarded patterns,
literal identifiers, and a couple of common beginner’s mistakes.

10.1 syntax-match and introspection features of
sweet-macros

In the last episode I have defined a very simple multi-define macro by using my own
sweet-macros framework. I have also claimed that sweet macros provides introspection
facilities, but I have not shown them. Here I will substain my claim.

First of all, let me show how you can get the patterns accepted by multi-define:

> (multi-define <patterns>)
((multi-define (name ...) (value ...)))

Since multi-define is a simple macro it accepts only a single pattern. However, it is pos-
sible to define macros with multiple patterns by relying on the second form of def-syntax,
i.e.

(def-syntax name transformer)

where the transformer is a procedure which is typically built on top of syntax-match. For
instance, suppose we wanted to extend multi-define to work also as a replacement of
define, i.e. suppose we want to accept the pattern (multi-define name value)
where name is an identifier. Here is how to do that by using syntax-match:

(def-syntax multi-define2
(syntax-match ()
(sub (ctx (name ...) (value ...))

#’(begin (define name value) ...))
(sub (ctx name value)

#’(define name value))
))

syntax-match recognizes the literal identifier sub as an expected keyword when it appears
in the right position, i.e. at the beginning of each clause. sub is there for two reasons:

53

The Adventures of a Pythonista in Schemeland, Release 0.1

1. in my opinion it makes the code more readable: you should read a clause (sub
pattern skeleton) as “substitute a chunk of code matching the pattern with the
code obtained by expanding the pattern variables inside the skeleton”;

2. it makes syntax-match look different from syntax-case and syntax-rules,
which is fine, since syntax-match is a little different from the Scheme standard macro
systems.

The identifier ctx that you see as first element of each pattern denotes the context of the
macro, a concept that I will explain in a future installment; you can use any valid identitier for
the context, including the name of the macro itself - that is a common convention. If you are
not interested in the context (which is the usual case) you can discard it and use the special
identifier _ to make clear your intent.

I leave as an exercise to check that if you invert the order of the clauses the macro does not
work: you must remember to put the most specific clause first.

In general you can get the source code for all the macros defined via def-syntax
and syntax-match. For instance, the source code (of the transformer) of our original
multi-define macro is the following:

> (multi-define <source>)
(syntax-match ()

(sub (multi-define (name ...) (value ...))
#’(begin (define name value) ...)))

As you see, for better readability def-syntax use the name of the macro for the context, but
any name would do.

I have not explained everything there is to know about syntax-match, but we need to leave
something out for the next episode, right?

10.2 A couple of common mistakes

If you try to write macros of your own, you will likely incur in mistakes. I think it is worth
warning my readers about a couple of such common mistakes.

The first one is forgetting the begin for macros expanding to multiple expressions. For in-
stance, you could be tempted to write multi-define as follows:

> (def-syntax (multi-define-wrong (name ...) (value ...))
#’((define name value) ...))

If you try to use this macro, you will get an exception:

> (multi-define-wrong (a) (1))
Unhandled exception
Condition components:

1. &who: define
2. &message: "a definition was found where an expression was expected"

54 Chapter 10. Features of (sweet-)macros

The Adventures of a Pythonista in Schemeland, Release 0.1

3. &syntax:
form: (define a 1)
subform: #f

The problem is that Scheme interprets a pattern of the form (func arg ...) as a function
application, but in this case func is the definition (define a 1) which is certainly not an
function, it is not even an expression!

Actually, R6RS Scheme distinguishes definitions from expressions, a little bit like in other
languages statements are distinguished from expressions, except that in Scheme there are no
statements other than definitions. You will get exactly the same error if you try to print a
definition (display (define a 1)): since a definition does not return anything, you
cannot print it.

A second common mistake is to forget the sharp-quote #’. If you forget it - for instance
if you write (begin (define name value) ...) instead of #’(begin (define
name value) ...) - you will get a strange error message: reference to pattern variable
outside a syntax form. To understand the message, you must understand what a syntax form is.
That requires a rather detailed explanation that I will leave for a future episode.

For the moment, be content with a simplified explanation. A syntax form is a special
type of quoted form: just as you write ’(some expression) or (quote (some
expression)) to keep unevaluated a block of (valid or invalid) Scheme code, you can
write #’(some expression) or (syntax (some expression)) to denote a block
of (valid or invalid) Scheme code which is intended to be used in a macro and contains pattern
variables. Pattern variables must always be written inside a syntax expression, so that they
can be replaced with their right values when the macro is expanded at compile time.

Note: R6RS Scheme requires the syntax #’x to be interpreted as a shortcut for (syntax x);
however there are R5RS implementation that do not allow the #’x syntax or use a different
meaning for it. In particular, that was the case for old versions of Chicken Scheme. If you want
to be fully portable you should use the extended form (syntax x). However, all the code
in this series is intended to work on R6RS Schemes, therefore I will always use the shortcut
notation #’ which in my opinion is ways more readable.

10.3 Guarded patterns

There are a few things I did not explain when introducing the multi-define macro. For
instance, what happens if the number of the identifiers does not match the number of the values?
Of course, you get an error:

> (multi-define (a b c) (1 2))
Unhandled exception
Condition components:

1. &assertion
2. &who: ...
3. &message: "length mismatch"
4. &irritants: ((#<syntax 1> #<syntax 2>) (#<syntax a> #<syntax b> #<syntax c>))

10.3. Guarded patterns 55

The Adventures of a Pythonista in Schemeland, Release 0.1

The problem is that the error message is a bit scary, with all those #<syntax > things. How
do we get an error message which is less scary to the newbie? Answer: by using the guarded
patterns feature of sweet-macros!

Here is an example:

(def-syntax (multi-define (name ...) (value ...)) ; the pattern
#’(begin (define name value) ...) ; the skeleton
(= (length #’(name ...)) (length #’(value ...))) ; the guard
(syntax-violation ’multi-define
"Names and values do not match"
#’((name ...) (value ...))))

The line (= (length #’(name ...)) (length #’(value ...))) is the guard
of the pattern (multi-define (name ...) (value ...)). The macro will ex-
pand the patterns in the guard into lists at compile time, then it will check that the number of
names matches the number of values; if the check is satified then the skeleton is expanded,
otherwise a syntax-violation is raised (i.e. a compile time exception) with a nice error
message:

> (multi-define (a b c) (1 2))
Unhandled exception:
Condition components:

1. &who: multi-define
2. &message: "Names and values do not match"
3. &syntax:

form: ((a b c) (1 2))
subform: #f

Because of their working at compile time, guarded patterns are an ideal tool to check the con-
sistency of our macros (remember: it is very important to check for errors as early as possible,
and the earliest possible time is compile time).

56 Chapter 10. Features of (sweet-)macros

The Adventures of a Pythonista in Schemeland, Release 0.1

10.4 Literal identifiers

Guarded patterns can also be (ab)used to recognize keyword-like identifiers in a macro. For
instance, here is how you could implement the semantics of the for loop discussed in episode
#8 with a macro (notice how all the funny characters ’,@‘ disappeared):

(def-syntax (for i from i0 to i1 action ...)
#’(let loop ((i i0))

(unless (>= i i1) action ... (loop (+ i 1))))
(and (eq? (syntax->datum #’from) ’from) (eq? (syntax->datum #’to) ’to)))

Here the R6RS primitive syntax->datum is used to convert the syntax objects #’from
and #’to into regular Scheme objects so that they can be compared for equality with the
literal identifiers ’from and ’to.

You can check that the macro works by trying to use a wrong syntax. For install if you mispell
from as fro you will get a syntax error at compilation time:

> (for i fro 1 to 5 (display i))
Unhandled exception:
Condition components:

1. &message: "invalid syntax"
2. &syntax:

form: (for i fro 1 to 5 (display i))
subform: #f

Notice that this is an abuse of guarded patterns, since syntax-match provides a built-in
mechanism just for that purpose. Moreover this macro is subject to the multiple evaluation
problem which I will discuss in the next episode: thus I do not recommend it as an example of
good style when writing macros. Still, I have written it here to compare it with the approach
in episode #8: with this macro I have been able to extend the Scheme compiler for within,
with just a few lines of code: that is much simpler than writing an external compiler as a
preprocessor, as I planned to do before.

As I said, syntax-match has the built-in capability of recognizing literal identifiers in the
patterns as if they were keywords. This is what the empty parenthesis are for. If you write
(syntax-match (lit ...) clause ...) the identifiers listed in (lit ...)
will be treated as literal identifiers in the macro scope. Literal identifiers can be used to en-
hance readability, or to define complex macros. For instance our for macro can be written
without need for guarded patterns as:

(def-syntax for
(syntax-match (from to)

(sub (for i from i0 to i1 action ...)
#’(let loop ((i i0))

(unless (>= i i1) action ... (loop (+ i 1)))))))

You can even introspect the literal identifiers recognized by syntax-match:

10.4. Literal identifiers 57

http://www.artima.com/weblogs/viewpost.jsp?thread=240793
http://www.artima.com/weblogs/viewpost.jsp?thread=240793
http://www.artima.com/weblogs/viewpost.jsp?thread=240793

The Adventures of a Pythonista in Schemeland, Release 0.1

> (for <literals>)
(from to)

Let me close this paragraph by suggesting an exercise in macrology. Try to implement a
Python-like for loop working as in the following examples:

> (for x in ’(1 2 3)
(display x))

123
> (for (x y) in ’((a b) (A B) (1 2))

(display x) (display y))
abAB12

Clearly it should work for a generic number of arguments and in should be treated as a literal
identifier. I will give the solution in episode 12, so you will have some time to play. Have fun!

58 Chapter 10. Features of (sweet-)macros

CHAPTER

ELEVEN

THE MULTIPLE EVALUATION
PROBLEM (AND EASY-TEST)

In this episode I will discuss the multiple evaluation issue, then I will show how macros can
improve performance. Finally, I will give a practical example of how macros can be used to
define a unit test framework.

11.1 The problem of multiple evaluation

In episode #10 I gave an example of a macro implementing a C-like for loop and I said that
it was suffering from the problem of multiple evaluation. Here I explain what the problem is
and how to cure it. In order to understand the issue, you must always remember that macros
expand code at compile time, but they not evaluate it: this means that pattern variables do not
correspond to evaluated expression, as ordinary variables, but they correspond to expressions
to be evaluated later, at runtime.

As a consequence, it is easy to write macros that evaluate expressions more times than needed.
For instance, consider the following simplified version of a C-like for loop, with a runtime
type check:

(def-syntax (for i start end body ...)
#’(begin

(assert (and (number? start) (number? end))); type-check
(let loop ((i start))

(unless (>= i end) body ... (loop (+ i 1))))))

Suppose the variable end to be determined dynamically with a computation:

> (define (get-end)
(printf "computing the value of end\n")

3)

Then our naive macro suffers from the multiple evaluation problem:

> (for i 0 (get-end) ’do-nothing)
computing the value of end
computing the value of end

59

http://www.artima.com/weblogs/viewpost.jsp?thread=240805

The Adventures of a Pythonista in Schemeland, Release 0.1

computing the value of end
computing the value of end
computing the value of end

As you see, in this example end is recomputed 5 times! The reason is clear if you look at the
expansion of the macro:

> (syntax-expand (for i 0 (get-end) ’do-nothing))
(begin
(assert (and (number? 0) (number? (get-end))))
(let loop ((i 0))

(unless (>= i (get-end)) ’do-nothing (loop (+ i 1)))))

The get-end function is called once in the assertion and four times in the loop; that is ineffi-
cient and can have very dramatic effects if the function has side effects. The solution is to save
the value of end (and we could do the same for the value of start, which is computed twice)
in a variable:

(def-syntax (for i start end body ...)
#’(let ((s start) (e end))

(assert (and (number? s) (number? e)))
(let loop ((i s))

(unless (>= i e) body ... (loop (+ i 1))))))

Now get-end is called only once and we are all happy :-)

As an exercise, you could extend for to accept a generic step. You can find the solution in the
Italian original version of this article, which is quite different and uses syntax-rules.

60 Chapter 11. The multiple evaluation problem (and easy-test)

http://stacktrace.it/2008/04/le-avventure-di-un-pythonista-schemeland8/

The Adventures of a Pythonista in Schemeland, Release 0.1

11.2 Taking advantage of multiple evaluation

Sometimes we can make good use of the multiple evaluation “feature”. For instance, let me
consided again the higher order function call I introduced in episode #5, when discussing
benchmark. That function has an issue: it is called at each iteration in the inner loop and
therefore it wastes time. However, it is possible to replace the higher order function with a
macro, therefore avoiding the cost of a function call. Here is the code for a repeat macro
doing the job of call:

(library (repeat-macro)
(export repeat)
(import (rnrs) (sweet-macros))

(def-syntax (repeat n body body* ...)
#’(let loop ((i 0))

(when (< i n) body body* ... (loop (+ 1 i)))))

11.2. Taking advantage of multiple evaluation 61

http://www.artima.com/weblogs/viewpost.jsp?thread=239699

The Adventures of a Pythonista in Schemeland, Release 0.1

)

repeat expands into a loop and therefore the body is evaluated n times, which is exactly what
we need for a benchmark. To check that the macro is effectively more efficient, I did measure
the time spent in summing 1+1 ten million of times:

(import (rnrs) (repeat-macro) (repeat) (only (ikarus) time))
(define n (string->number (car (reverse (command-line)))))
(time (call 10000000 + 1 n))
(time (repeat 10000000 (+ 1 n)))

I took the number n from the command line arguments in order to fool the compiler: if I
hard coded (+ 1 1), the compiler would replace it with 2 at compilation time, therefore not
performing the computation! (In the original version of this episode I made that mistake, thanks
to Aziz Ghuloum for pointing it out). The output of the script is the following:

$ scheme-script repeat-benchmark.ss 1
running stats for (call 10000000 + 1 n):

no collections
396 ms elapsed cpu time, including 0 ms collecting
394 ms elapsed real time, including 0 ms collecting
32 bytes allocated

running stats for (repeat 10000000 (+ 1 n)):
no collections
40 ms elapsed cpu time, including 0 ms collecting
40 ms elapsed real time, including 0 ms collecting
0 bytes allocated

As you see, avoiding the function call makes a lot of difference (the benchmark is 10 times
faster!) since the great majority of the time is wasted in calling the benchmarking function and
not in the real addition. Here the improvement is spectacular since summing two integers is a
very fast operation: replacing call with repeat in the benchmark factorial does not make a
big difference instead.

11.3 A micro-framework for unit tests

It is time to give a more practical example of Scheme macros. In this paragraph, I will define a
very simple unit test framework called easy-test.

Clearly, there are already unit test frameworks available for Scheme, including two SRFIs (64
and 78); my interests here is not in the testing framework, it is in the implementation, which
makes a pedagogical exercise in macrology.

The source code takes just a page:

62 Chapter 11. The multiple evaluation problem (and easy-test)

http://srfi.schemers.org/srfi-64/srfi-64.html
http://srfi.schemers.org/srfi-78/srfi-78.html

The Adventures of a Pythonista in Schemeland, Release 0.1

#!r6rs
(library (aps easy-test)
(export catch-error test run-tests runner run)
(import (rnrs) (aps compat) (sweet-macros))

;; helper macro
(def-syntax (catch-error body body* ...)
#’(let*

((error-message #f)
(result
(guard (err ;; as a side effect, set! the error message if any

((or (assertion-violation? err) (error? err)
(undefined-violation? err))

(set! error-message (condition-message err))))
body body* ...)))

(if error-message error-message
(error ’catch-error "Expected error, got none!"

’(body body* ...) ’=> result))))

;; test macro
(def-syntax (test description expr expected)

#’(lambda (cmd)
(case cmd

((descr) description)
((values) (list expected expr ’expr))
((run) (equal? expr expected))
(else (error ’test "Invalid command" cmd)))))

;; four helper functions
(define (print-nothing descr expected evalued-expr expr)

(display ""))

(define (print-dot descr expected evalued-expr expr)
(display "."))

(define (print-msg descr expected evalued-expr expr)
(printf "\n~s failed\nExpected ~s, got ~s\nExpression was ~a\n"

descr expected evalued-expr expr))

(define (print-stats successes failures)
(define total (+ successes failures))
(printf "\nRun ~a tests. ~a passed, ~a failed\n" total successes failures))

;; full runner

11.3. A micro-framework for unit tests 63

The Adventures of a Pythonista in Schemeland, Release 0.1

(define (run-tests print-success print-failure . tests)
(let loop ((tests tests) (success 0) (failure 0))
(if (null? tests)

(list success failure)
(let* ((test1 (car tests))

(descr (test1 ’descr)) (vals (test1 ’values)))
(if (test1 ’run)

(begin; the test succeeded
(apply print-success descr vals)
(loop (cdr tests) (+ 1 success) failure))

(begin; the test failed
(apply print-failure descr vals)
(loop (cdr tests) success (+ 1 failure))))))))

;; runner factory
(define (runner print-success print-failure print-stats)
(lambda tests
(define succ-fail (apply run-tests print-success print-failure tests))
(apply print-stats succ-fail)))

;; default runner
(define run (runner print-dot print-msg print-stats))

)

The core of the framework is the test macro, which is a bit different from the macros we
have defined until now. The reason why the test macro is different is that it expands into
a lambda-expression and therefore the arguments of the macro are evaluated only when the
lambda function is called and not at definition time. In other words, we are using a pattern of
delayed evaluation here. This is important, since we want to distinguish the definition of a test
from its execution. For instance, let me define a trivial test:

> (import (easy-test))
> (define test1 (test "1+1=2" (+ 1 1) 2))

The first argument of the macro is a string describing the test, which is nice to have in the error
message for failed tests; the second argument of the macro is the expression to check and the
third argument is the expected result.

Macro application results in a function which is able to respond to the commands ’descr
(returning the description string), ’values (returning a list with the quoted input expression
and the quoted expected output) and ’run (returning the result of the test, as a boolean flag).
This is implemented via the case expression in the test macro:

(case cmd
((descr) description)
((values) ’(expr expected))
((run) (equal? expr expected))
(else (error ’test "Invalid command" cmd)))

64 Chapter 11. The multiple evaluation problem (and easy-test)

http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-14.html#node_idx_384

The Adventures of a Pythonista in Schemeland, Release 0.1

Here is how it works in our example:

> (test1 ’descr)
"1+1=2"
> (test1 ’values)
((+ 1 1) 2)
> (test1 ’run) ; the test passed
#t

The framework provides three predefined functions print-nothing, print-msg and
print-dot to print feedback about how the tests are going; moreover, it is possible to define
custom reporting functions. A reporting function is simply a function with three arguments
(descr expr expected) where descr is a string with the description of the test, expr
is the expression to be checked and expected is the expected result. You can specify the
reporting functions to use by defining a test runner as in this example:

> (define run-quiet (runner print-nothing print-msg))
> (run-quiet

(test "1+1=2" (+ 1 1) 2)
(test "2*1=2" (* 2 1) 2)
(test "2+2=3" (+ 2 2) 3))

’2+2=3’ failed. Expected 3, got 4
(2 1)

The runner returns a list with the number of passed tests and failed tests (in our case ’(2 1)).

It is also possible to use the default runner (run): the framework will use the default reporting
functions, i.e. print-dot for successful tests and print-msg for failed tests.

11.3. A micro-framework for unit tests 65

The Adventures of a Pythonista in Schemeland, Release 0.1

66 Chapter 11. The multiple evaluation problem (and easy-test)

CHAPTER

TWELVE

ARE MACROS REALLY USEFUL?

In this episode I discuss the utility of macros for enterprise programmers.

12.1 Are macros “just syntactic sugar”?

There is a serious problem when teaching macros to beginners: the real power of macros is only
seen when solving difficult problems, but you cannot use those problems as teaching examples.
As a consequence, virtually all beginner’s introductions to macros are dumbed down: usually
they just show a few trivial examples about how to modify the Scheme syntax to resemble some
other language. I did the same too. This way of teaching macros has two negative effects:

67

The Adventures of a Pythonista in Schemeland, Release 0.1

1. beginners are naturally inclined to pervert the language instead of learning it;

2. beginners can easily dismiss macros as mere syntactic sugar.

The first effect is the most dangerous: the fact that you can implement a C-like for loop in
Scheme does not mean that you should use it! I strongly believe that learning a language means
learning its idioms: learning a new language means that you must change the way you think
when writing code. In particular, in Scheme, you must get used to recursion and accumulators,
not to imperative loops, there is no other way around.

Actually, there are cases where perverting the language may have business sense. For instance,
suppose you are translating a library from another language with a for loop to Scheme. If you
want to spend a minimal effort in the translation and if for any reason you want to stay close to
the original implementation (for instance, for simplifying maintenance), then it makes sense to
leverage on the macro facility and to add the for loop to the language syntax.

The problem is that it is very easy to abuse the mechanism. Generally speaking, the adaptibility
of the Scheme language is a double-edged sword. There is no doubts that it increases the
programmer expressivity, but it can also make programs more difficult to read. The language
allow you to invent your own idioms that nobody else uses, but perhaps this is not such a good
idea if you care about other people reading your code. For this reason macros in the Python
community have always been viewed with suspicion: I am also pretty confident that they will
never enter in the language.

The second effect (dismissing macros) is less serious: lots of people understimate macros as
mere syntactic sugar, by forgetting that all Turing complete languages differ solely on syntactic
sugar. Moreover, thinking too much about the syntactic sugar aspect make them blind to others
and more important aspects of macros: in particular, the fact that macros are actually compilers.

That means that you can implement with macros both compile time checks (as I have stressed
in episode #10, when talking about guarded patterns) and compile time computations (I have
not discussed this point yet) with substantial benefits for what concerns both the reliability and
the performance of your programs. In episode #11 I have already shown how you can use
macros to avoid expensive function calls in benchmarks and the example generalizes to any
other situations.

In general, since macros allows you to customize the evaluation mechanism of the language,
you can do with macros things which are impossible without them: such an example is the
test macro discussed in episode #11. I strongly suggest you to read the third comment to that
episode, whereas it is argued that it is impossible to implement an equivalent functionality in
Python.

So, you should not underestimate the power of macros; on the other hand, you should also not
underestimate the complexity of macros. Recently I have started a thread on comp.lang.scheme
with 180+ messages about the issues I have encountered when porting my sweet-macros
library between different Scheme implementations, and the thread ended up discussing a lot of
hairy points about macros (expand-time vs run-time, multiple instantiation of modules, separate
compilation, and all that).

68 Chapter 12. Are macros really useful?

http://www.artima.com/weblogs/viewpost.jsp?thread=240805
http://www.artima.com/weblogs/viewpost.jsp?thread=240833
http://www.artima.com/weblogs/viewpost.jsp?thread=240833
http://groups.google.com/group/comp.lang.scheme/browse_frm/thread/8927053ede92fd27?hl=en

The Adventures of a Pythonista in Schemeland, Release 0.1

12.2 About the usefulness of macros for application
programmers

I am not an advocate of macros for enterprise programming. Actually, even ignoring the issue
with macros, I cannot advocate Scheme for enterprise programming because of the lack of a
standard library worth of its name. This was more of an issue with R5RS Scheme, but it is still
a problem since Scheme has an extremely small standard library and no concept of batteries
included à la Python. As a consequence, everybody has to invent its own collections of utilities,
each collection a little bit different from the other.

For instance, when I started learning Scheme I wrote a lot of utilities; later on, I discovered
that I could find the same utilites, under different names and slightly different signatures, in
various Scheme frameworks. This never happened to me in Python to the same extent, since
the standard library is already coding in an uniform way most of the useful idioms, so that
everybody uses the library and there is less need to reinvent the wheel.

On the other hand, I am not a macro aficionado like Paul Graham, who says:

When there are patterns in source code, the response should not be to enshrine
them in a list of “best practices,” or to find an IDE that can generate them. Patterns
in your code mean you are doing something wrong. You should write the macro
that will generate them and call that instead.

I think Graham is right in the first part of its analysis, but not in the conclusion. I agree that
patterns are a code smell and I think that they denote a lack in the language or in its standard
library. On the other hand, the real solution for the enterprise programmer is not to write
her own macro which nobody knows, but to have the feature included in the language by an
authoritative source (for instance Guido van Rossum in the case of Python) so that all users of
the language get the benefit in an uniform way.

This happened recently in Python, with the ternary operator, with the try .. except ..
finally statement, with the with statement, with extended generators and in many other
cases. The Scheme way in which everybody writes his own language makes sense for the
academic researcher, for the solitary hacker, or for very small team of programmers, but not for
the enterprise.

Notice that I am not talking about specialized newly invented constructs: I am talking about
patterns and by definition, according to the GoF, a pattern cannot be new, it must be a tried
and tested solution to a common problem. If something is so common and well known to be a
pattern, it also deserves to be in the standard library of the language, or in a standard framework.
This works well for scripting languages, which have a fast evolution, and less well in languages
designed by committee, where you can wait years and years for any modernization of the
language/library (we all know Paul Graham is coming from Common Lisp, so his position is
understandable).

In my opinion - and your are free to disagree of course - the enterprise programmer is much
better served by a language without macros but with a very complete library where all useful
constructs have been codified already. After all, 99.9% of the times the enterprise programmer
has to do with already solved problems: it is not by chance that frameworks are so used in the
enterprise world. Notice that by “enterprise programmer” I mean the framework user, not the
framework writer.

12.2. About the usefulness of macros for application programmers 69

http://en.wikipedia.org/wiki/Code_smell
http://en.wikipedia.org/wiki/Design_Patterns

The Adventures of a Pythonista in Schemeland, Release 0.1

Take my case for instance: at work I am doing some Web programming, and I just use one
of the major Python web frameworks (there already too many of them!); I do quite of lot of
interaction with databases, and I just use the standard or de facto standard drivers/libraries
provided for the task at hand; I also do some scripting task: then I use the standard library a
lot. For all the task I routinely perform at my day job macros would not help me a bit: after all
Python has already many solutions to avoid boilerplate (decorators, metaclasses, etc.) and the
need for macros is not felt. I admit that some times I wished for new constructs in Python: but
usually it was just a matter of time and patience to get them in the language and while waiting
I could always solve my problems anyway, maybe in a less elegant way.

There are good use cases for macros, but there also plenty of workarounds for the average
application programmer.

For instance, a case where one could argue for macros, is when there are performance issues,
since macros are able to lift computations from runtime to compile time, and they can be used
for code optimization. However, even without macros, there is plenty of room for optimization
in the scripting language world, which typically involve interfacing with C/C++.

There are also various standard techniques for code generation in C, whereas C++ has the
infamous templates: while those are solutions very much inferior to Scheme macros, they
also have the enormous advantage of working with an enterprise-familiar technology, and you
certainly cannot say that for Scheme.

The other good use for macros is to implement compile time checks: compile time checks are
a good thing, but in practice people have learned to live without them by relying on a good unit
test coverage, which is needed anyway.

On the other hand, one should not underestimate the downsides of macros. Evaluation of code
defined inside of the macro body at compile time or suspension of evaluation therein leads often
to bugs that are hard to track. The behaviour of the code is generally not easy to understand
and debugging macros is no fun.

That should explain why the current situation about Scheme in the enterprise world is as it is.
It is also true that the enterprise programmer’s job is sometimes quite boring, and you can risk
brain atrophy, whereas for sure you will not incur in this risk if you keep reading my Adventures
;)

You may look at this series as a cure against senility!

12.3 Appendix: a Pythonic for loop

In this appendix I will give the solution to the exercise suggested at the end of episode #10, i.e.
implementing a Python-like for loop.

First of all, let me notice that Scheme already has the functionality of Python for loop (at least
for lists) via the for-each construct:

> (for-each (lambda (x y) (display x) (display y)) ’(a x 1) ’(b y 2))
abxy12

The problem is that the syntax looks quite different from Python:

70 Chapter 12. Are macros really useful?

http://www.artima.com/weblogs/viewpost.jsp?thread=240805
http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-14.html#node_idx_644

The Adventures of a Pythonista in Schemeland, Release 0.1

>>> for (x, y) in (("a", "b"), ("x", "y"), (1, 2)):
... sys.stdout.write(x); sys.stdout.write(y)

One problem is that the order of the list is completely different, but this is easy to fix with a
transpose function:

(define (transpose llist) ; llist is a list of lists
(if (and (list? llist) (for-all list? llist))

(apply map list llist)
(error ’transpose "Not a list of lists" llist)))

(if you have read carefully episode #8 you will notice the similarity between transpose and
zip). transpose works as follows:

> (transpose ’((a b) (x y) (1 2)))
((a x 1) (b y 2))))

Then there is the issue of hiding the lambda form, but this is an easy job for a macro:

(def-syntax for
(syntax-match (in)
(sub (for el in lst do something ...)

#’(for-each (lambda (el) do something ...) lst)
(identifier? #’el))

(sub (for (el ...) in lst do something ...)
#’(apply for-each (lambda (el ...) do something ...) (transpose lst))
(for-all identifier? #’(el ...))
(syntax-violation ’for "Non identifier" #’(el ...)

(remp identifier? #’(el ...))))
))

The important thing to notice in this implementation is the usage of a guard with an else
clause: that allows to introduce two different behaviours for the macro at the same time. If the
pattern variable el is an identifier, then for is converted into a simple for-each:

> (for x in ’(1 2 3) (display x))
123

On the other hand, if the pattern variable el is a list of identifiers and lst is a list of lists,
then the macro also reorganizes the arguments of the underlying for-each expression, so
that for works as Python’s for:

> (for (x y) in ’((a b) (x y) (1 2)) (display x) (display y))
abxy12

12.3. Appendix: a Pythonic for loop 71

http://www.artima.com/weblogs/viewpost.jsp?thread=240793

The Adventures of a Pythonista in Schemeland, Release 0.1

72 Chapter 12. Are macros really useful?

CHAPTER

THIRTEEN

MICRO-INTRODUCTION TO
FUNCTIONAL PROGRAMMING

The first installment of my long-awaited third cycle of a Pythonista’s adventures with Scheme
is devoted to Scheme’s functional aspects.

13.1 A minimal introduction to functional programming

I assume you already know what pure functional language means: a language is purely func-
tional if variables cannot be re-assigned, data structures cannot be modified, and side effects
are excluded.

Of course, it is impossible to program with a pure functional language, since input and output
are based on side effects and you cannot have a sensible program without input and output.
However, a practical functional language can still be as pure as possible if it is able to confine
the non-functional aspects to input and output only, in a controlled way.

The purest functional language out there is probably Haskell; on a lower level of purity we find
the languages of the ML family (SML, OCAML, F#, ...); on a lower level there is Scheme.
Python and Common Lisp are at the same level, both below Scheme.

I would not consider Python and Common Lisp as truly functional languages: they are just
imperative languages with some support for functional programming (I mean constructs such
as map, filter, reduce, list comprehension, generators, et cetera). However, there is a
large gap between an imperative language with some support for functional programming and
a true functional language.

True functional languages have strong support for recursion (tail call optimization), for higher
order functions and for pattern matching; moreover, true functional languages are based on
immutable data structures. Scheme is somewhat less functional than SML and Haskell, since
Scheme lists are mutable, currying is not supported by the base syntax of the language, (it can
be implemented via macros, of course) and generally speaking one uses higher order functions
less.

While not pure, Scheme can be quite functional if you avoid rebinding and you restrict yourself
to functional data structures, and it allows many typical idioms of functional programming
which have no counterpart in imperative programming. We already saw a common trick in
episode #5, i.e. the accumulator trick, which is a way to avoid mutation in loops by using
recursion. In this episode and the next ones we will show many others.

73

http://en.wikipedia.org/wiki/Currying
http://www.artima.com/weblogs/viewpost.jsp?thread=239699

The Adventures of a Pythonista in Schemeland, Release 0.1

Figure 13.1: The purity of functional languages

13.2 Functional data structures: pairs and lists

Historically, the basic data types of Lisp languages (pairs and lists) have always been mutable.
In all Lisp dialects (including Scheme) it has always been possible to modify the car and the
cdr of a pair freely. The situation changed with the R6RS report: nowadays the imperative
procedures set-car! and set-cdr! have been removed from the rnrs environment.

Actually, it is still possible to mutate pairs, but only by extending the rnrs environment, i.e. by
importing the (rnrs mutable-pairs) extension, which is part of the standard library but
not of the core language. This is a clear indication of the fact that the functional paradigm is
somewhat a recommended paradigm in Scheme, even if it is not enforced (in strongly functional
languages, such as SML and Haskell, lists are immutable and there is no other option).

I should notice that the requirement of importing (rnrs mutable-pairs) is only valid for
scripts and libraries: the behavior of the REPL is unspecified in the R6RS document (actually
the R6RS forbids a REPL but every R6RS implementation provides a REPL with some dif-
ferent semantics) and implementations are free to import or not to import mutable-pairs
in the REPL. The REPL of Ikarus imports mutable-pairs by default, so you have at your
disposal set-car! and set-cdr!, but this is an implementation specific choice; other
implementations can behave differently from Ikarus at the REPL, and in general they do.

Excluding code typed at the REPL, in principle the compiler could use immutability optimiza-
tions for library code not importing the (rnrs mutable-pairs) extension. In practice, a
Scheme compiler cannot perform the optimizations based on the assumption of truly immutable

74 Chapter 13. Micro-introduction to functional programming

The Adventures of a Pythonista in Schemeland, Release 0.1

pairs, because the current standard says that cons must allocate a new pair and cannot re-use
a previously created one (i.e. (eq? (cons x y) (cons x y)) is always false for any
value of x and y: even if the two conses have the same value, they correspond to different
objects).

If pairs were really immutable, a compiler could use the same object for equivalent pairs, i.e.
’(x . y) could be the same as (cons x y) and a compiler could cache that value: with
the current standard that cannot never happen. The point is well explained in a recent thread in
comp.lang.scheme (Really immutable pairs).

Really immutable pairs (and thus lists) have lots of advantages: I would welcome them in the
standard, but I am not sure if that will happen, since there is a potential compatibility breaking
problem. I can only hope for the best. Immutability has advantages from the point of view of
efficiency and makes the life of language implementors easier, but those are not really important
point for an application programmer.

The important point for the mere mortals is that programs based on immutable data structures
becomes easier to understand and to debug. For instance, consider a routine taking a list in input
and suppose that the content of the list is not what you would expect. If the list is mutable you
potentially have to wonder about your whole code base, since everything could have mutated
the list before reaching the routine you are interested in. If the list if immutable, you are sure
that the bug must be in the procedure which created the list, and in no other place.

Moreover, functional structures avoid whole classes of bugs (I am sure every Pythonista has
found some issue with lists being mutable, especially when used as default arguments) espe-
cially in the hairy situations of multithreaded code. In my Adventures I will never rely on the
ability to mutate pairs, and I will use pairs as functional data structures.

13.3 Functional update

There is apparently an issue with immutable data structures: in many imperative programs one
needs to modify the data: but how can you update an immutable object?

The answer is actually pretty simple: you don’t. Since you cannot mutate an immutable object,
the only option is to create a brand new object with a different content from the original one.
This mechanism is called functional update: for instance, it is easy to define two functional
procedures set-car and set-cdr performing the job of set-car! and set-cdr! but
without mutation:

(define (set-car pair value)
(cons value (cdr pair)))

> (set-car (cons 1 2) 3)
(3 . 2)

(define (set-cdr pair value)
(cons (car pair) value))

> (set-cdr (cons 1 2) 3)
(1 . 3)

13.3. Functional update 75

http://groups.google.com/group/comp.lang.scheme/browse_frm/thread/7eccba9fb4eebb44/69241209d0d053bb?hl=en\&lnk=gst\&q=immutable+pairs#69241209d0d053bb

The Adventures of a Pythonista in Schemeland, Release 0.1

What if you want to (functionally) update the n-th value of a list? The trick is to use recursion:

(define (list-set n lst value)
(if (zero? n)

(set-car lst value)
(cons (car lst) (list-set (- n 1) (cdr lst) value))))

> (list-set 2 ’(a b c d) ’X)
(a b X d)

Notice that list-set is nicer than its imperative counterpart:

(define (list-set! n lst value)
(set-car! (list-tail lst n) value) lst)

> (define ls ’(a b c d))
> (list-set! 2 ls ’X)
> ls
(a b X d)

Notice the use of the R6RS procedure (list-tail lst n) which returns the tail of
lst starting from the n-th element. The indexing starts from zero, as usual (for instance
(list-tail ’(a b c d) 2) is the list (c d)). The important bit to understand how
list-set! works is that list-tail returns the tail, and not a copy of it: by mutating the
tail you are actually mutating the original list. This is clearly quite risky.

The R6RS standard does not provide primitives for functional update out of the box (
list-set! is not in the standard since it is of very little utility: if you want to be able
to modify the n-th element of a sequence, you are much better off by using a vector and not a
list). However, it does provide primitives to remove elements for a list functionally:

> (remp even? ’(3 1 4 1 5 9 2 6 5)); complementary of filter
(3 1 1 5 9 5)

> (remove 1 ’(3 1 4 1 5 9 2 6 5))
(3 4 5 9 2 6 5)

> (remv 1 ’(3 1 4 1 5 9 2 6 5))
(3 4 5 9 2 6 5)

> (remq ’foo ’(bar foo baz))
(bar baz)

(you can find other list utilities in R6RS standard library).

One would expect functional update to be much slower than imperative update, because of the
need of creating potentially long lists to modify just a single element. However, this is not
necessarily true. It all depends on how smart your compiler is. A smart compiler can internally
use mutation (at the machine level), so in principle it could be as fast as imperative code. The
advantage is that mutation is managed by the compiler, not by the programmer, who can think
purely in terms of immutable data structures.

76 Chapter 13. Micro-introduction to functional programming

http://www.r6rs.org/final/html/r6rs-lib/r6rs-lib-Z-H-4.html#node_chap_3

The Adventures of a Pythonista in Schemeland, Release 0.1

It is true that compilers for functional languages are still slower than C compilers in average, but
they are not so bad. In most situations the slowdown is acceptable and in particular situations
compilers for functional languages can be faster than a C compiler. Moreover, they allow for
memory optimizations. For instance, you can memoize an immutable list, whereas you cannot
memoize a mutable one.

Since I come from a Python background I do not care much about performance and optimiza-
tions, but I care a lot about maintainability of programs and bug reduction, as well as about
conceptual cleanness. Moreover, this series has also some pedagogical intention, therefore I
will prefer functional solutions over imperative ones here, in order to show new ways of doing
old things.

13.3. Functional update 77

The Adventures of a Pythonista in Schemeland, Release 0.1

78 Chapter 13. Micro-introduction to functional programming

CHAPTER

FOURTEEN

CURRYING, PARTIAL APPLICATION,
AND FOLD

Everything you ever wanted to know about currying, partial application, higher order functions
and related topics.

14.1 Higher order functions and curried functions

A language has support for first class functions if it is possible to use a function as a regular
value, i.e. if it is possible to pass a function to another function, or return it from a function. In a
language with first class functions, it is therefore possible to define the concept of higher order
function is: a function which accepts in input or returns in output (or both) another function.

Various imperative languages have support for higher order functions: all the scripting lan-
guages, the latest version of C#, Scala, and a few others. Still, functional languages have a
better support and higher order functions are used in those language much more that in imper-
ative languages. This is especially true for languages such as ML and Haskell, which support
curried functions out of the box: in such languages all functions are really unary functions
(i.e. they accept a single argument) and functions of n arguments are actually unary functions
returning closures. In Scheme this behavior can be emulated with macros. Here is an example
of how one could define curried functions in Scheme:

(def-syntax curried-lambda
(syntax-match ()

(sub (curried-lambda () b b* ...)
#’(begin b b* ...))

(sub (curried-lambda (x x* ...) b b* ...)
#’(lambda (x) (curried-lambda (x* ...) b b* ...)))

))

(def-syntax (define/curried (f x ...) b b* ...)
#’(define f (curried-lambda (x ...) b b* ...)))

define/curried defines a function with (apparently) n arguments as an unary function
returning a closure, i.e. a function with (apparently) n-1 arguments which in turns is an unary
function returning a closure with n-2 arguments and so on, until it returns an unary function.
For instance, the following add function

79

The Adventures of a Pythonista in Schemeland, Release 0.1

(define/curried (add x y) (+ x y))

apparently has two arguments, but actually it is an unary function returning an unary closure:

> (add 1)
#<procedure>
> ((add 1) 2)
3

You can see how the macro works by using syntax-expand:

> (syntax-expand (curried-lambda (x y) (+ x y)))
(lambda (x) (curried-lambda (y) (+ x y)))

The internal curried-lambda has a single argument in this case and thus expands to a reg-
ular lambda function, but you can see that in general you will have a tower of nested lambdas,
which dept is equal to the number of arguments.

Whereas it is possible define curried functions in Scheme, usually this is not very convenient,
unless you are trying to emulate ML or Haskell idioms. Out of the box, Scheme supports

80 Chapter 14. Currying, partial application, and fold

The Adventures of a Pythonista in Schemeland, Release 0.1

functions with multiple arguments in a traditional fashion, i.e. the same as in Python: thus, the
most convenient construct is not currying, but partial application. The Pythonistas here will
certainly think of functools.partial, an utility which was added to the standard library
starting from Python 2.5. Schemers have something similar (but of course better) in the form
of SRFI-26, i.e. the cut and cute macros by Al Petrofsky.

14.2 Partial application: cut and cute

Instead of spending too many words, let me show an example of how partial function applica-
tion works both in Python and in Scheme.

Here is the Python version:

>>> from functools import partial
>>> from operator import add
>>> add1 = partial(add, 1)
>>> add1(2)
3

and here is the Scheme version:

> (import (srfi-26)); assuming it is available in your implementation
> (define add1 (cut + 1 <>))
> (add1 2)
3

In Python, partial(add, 1) returns an unary callable object that adds 1 to its argument; in
Scheme, (cut + 1 <>) returns an unary function that does the same. The Scheme version
is better, since the arguments of the resulting functions are immediately vas visible as slots (i.e.
the <> symbol). For instance

> (define greetings (cut string-append "hello " <> " and " <>))

has two slots and therefore is a function of two arguments:

> (greetings "Michele" "Mario")
"hello Michele and Mario"

It is also possible to define a variable number of arguments by using the rest-slot symbol
<...>:

> (define greetings (cut string-append "hello " <> " and " <...>))
> (display (greetings "Michele" "Mario" "\n"))
hello Michele and Mario

We can even use a slot for the function: for instance, the higher order function apply could
be implemented as (cut <> <...>).

14.2. Partial application: cut and cute 81

The Adventures of a Pythonista in Schemeland, Release 0.1

Moreover, there is a cute macro which acts exactly as cut, with a single difference: the
arguments in cute are evalued only once (the e stands for evalued), whereas cut is not safe
against multiple evaluation. In particular, if you define

> (define add-result (cute + (long-computation) <>))

then add-result performs the long computation only once, at definition time, and not every
time it is called. For more details I refer you the SRFI-26 specification.

14.3 fold-left and fold-right

A couple of commonly used higher order functions in Scheme and other functional languages
are fold-left and fold-right. They entered in the R6RS standard, but they are also
available from SRFI-1, therefore you can leverage on them even if you are using an R5RS
Scheme.

fold-left and fold-right will remind Pythonistas of reduce, which is also a folding
function. However, it is well known that Guido dislikes it and nowadays reduce is no more
a builtin (in Python 3.0); it is still available in the functools module, though. For some
reason (probabily the order of the arguments which I cannot remember) I cannot use reduce
in Python, whereas I have less problems with fold-left e fold-right in Scheme and
other functional languages.

fold-left and fold-right have a nearly identical API: both allow to traverse a list by
accumulating values and by returning at the end the final accumulator. For instance, if you
want to sum the values of list, here is an idiomatic solution in Scheme (another one is (apply
+ numbers-list):

> (fold-left + 0 ’(1 2 3)); sum all elements starting from 0; fold-right works too
6

In general, the function in fold-left takes N + 1 arguments, where N is the number of lists
you are looping over (usually N = 1) and the leftmost argument is the accumulator. The same
is true for fold-right, but then the rightmost argument is the accumulator.

Notice that fold-left is quite different from fold-right, since they work in opposite
order:

> (fold-left (lambda (acc el) (cons el acc)) ’() ’(1 2 3))
(3 2 1)

> (fold-right (lambda (el acc) (cons el acc)) ’() ’(1 2 3))
(1 2 3)

In the first case fold-left loops from left to right (the element 1 is the first to be consed,
the element 2 is the second to be consed, and the element 3 is the last to be consed, so that
the final result is (cons 3 (cons 2 (cons 1 ’()))) i.e. (3 2 1)) whereas in the
second case fold-right loops from right to left.

82 Chapter 14. Currying, partial application, and fold

http://srfi.schemers.org/srfi-26/srfi-26.html
http://srfi.schemers.org/srfi-1/srfi-1.html

The Adventures of a Pythonista in Schemeland, Release 0.1

In order to give an example of use, here is how you could define a flattening procedure by using
fold-right:

(define (flatten lst)
(fold-right
(lambda (x a)

(if (list? x) (append (flatten x) a) (cons x a))) ’() lst))

You can check that it works with a few tests:

(test "flatten null"
(flatten ’())
’())

(test "flatten plain"
(flatten ’(a b c))
’(a b c))

(test "flatten nested"
(flatten ’((a b) (c (d e) f)))
’(a b c d e f))

Here is another example, a function to remove duplicates from a list:

;; ex: (remove-dupl = ’(1 2 3 1 5 2 4)) => (1 2 3 5 4)
(define (remove-dupl eq? lst)

(reverse
(fold-left
(lambda (acc el)
(if (exists (cut eq? <> el) acc); duplicate

acc
(cons el acc)))

’() lst)))

Notice the use of cut to define an unary function (cut eq? <> el) which checks if
its argument is equal - according to the provided equality function - to a given element el.
exists is one of the list processing utilities standardized by the R6RS document. Here is a
test:

(test "remove-dupl"
(remove-dupl equal? ’(1 #f 2 #f 3))
’(1 #f 2 3))

Having first class functions in a language means much more than having map, filter or fold.
Perhaps in the future I will add another episode about advanced usage of functions, such a
parsing combinators or formatting combinators; for the moment what I said here should be
enough, and the next episode will be devoted to another typical feature of functional languages:
pattern matching.

14.3. fold-left and fold-right 83

http://www.r6rs.org/final/html/r6rs-lib/r6rs-lib-Z-H-4.html#node_chap_3
http://shaurz.wordpress.com/2008/03/11/haskell-style-parser-combinators-in-scheme/
http://www.call-with-current-continuation.org/eggs/3/fmt.html

The Adventures of a Pythonista in Schemeland, Release 0.1

84 Chapter 14. Currying, partial application, and fold

CHAPTER

FIFTEEN

LIST DESTRUCTURING

In my Adventures I have referred many times to pattern matching, but only in the context of
compile time pattern matching in macros. There is another form of pattern matching, which is
quite common in Scheme and in other functional languages: run time pattern matching. This
episode will shed some light on the technique.

15.1 About pattern matching

It is impossible to overvalue the importance of pattern matching which is in my opinion one of
the most important concepts in programming. Unfortunately, this technique is only available
in very high level programming languages and therefore it is usually unknown to the average
programmer.

I saw pattern matching for the first time in ‘95, when using Mathematica for High Energy
Physics symbolic computations, which is a very specific usage indeed. Nowadays, however,
the trend toward higher and higher abstraction is influencing all programmming languages and
I am pretty sure than soon or later pattern matching will enter in mainstream languages.

For the moment, you can find it in functional languages and, in a poor man form, in certain
scripting languages. It should be noticed that common functional languages such as SML,
OCaml, F#, Haskell (or even Scala) only have run time pattern matching, since they lack
macros. In Scheme instead compile time pattern matching is somewhat preferred: you use
it to manipulate compile-time lists which are actually blocks of code wrapped in macros.

Runtime pattern matching is used to manipulate lists (or other data structures) which are only
know at runtime: in particular, they could be user input. Compile time pattern matching can be
used to implement a compiler; run time pattern matching to implement an interpreter.

In this episode I will discuss only a poor man form of runtime pattern matching, list destruc-
turing, i.e. the ability to match (nested) lists with a single predefined pattern. This ability is
akin to what def-syntax can do at compile time. Full runtime pattern matching is able to
manage a whole set of patterns, akin to what syntax-match can do at compile time.

The poor form of pattern matching is called tuple unpacking in Python (note for lispers: you
would call it destructuring bind). For instance, you can write:

>>> (a, (b, [c, d])) = (1, [2, iter((3, 4))])
>>> (a, b, c, d)
(1, 2, 3, 4)

85

The Adventures of a Pythonista in Schemeland, Release 0.1

Tuple unpacking works at any level of nesting and for any kind of iterable, therefore it is pretty
powerful. Moreover, tuple unpacking is even more powerful in Python 3.0, where it is possible
to split an iterable into its head (car) and tail (cdr):

>>> head, *tail=(i for i in (1,2,3))
>>> (head, tail)
(1, [2, 3])

I have noticed in episode #5 that the star syntax in Python is similar to the dot syntax in Scheme,
when used in the signature of functions with a variable number of arguments (variadic func-
tions); the syntactic extension in Python 3.0 makes the similarity stronger.

The main difference between Python and Scheme is that Scheme pattern matching is not poly-
morphic, i.e. you cannot match with the same pattern a list and a vector or an equivalent
iterable. You must use different patterns, or esplicitely convert the types.

There are plenty of libraries for full runtime pattern matching: one of the most common is the
match library by Andrew Wright, which is available practically for all Scheme implementa-
tions. In Chicken Scheme match is actually built-in in the core language:

$ csi
CHICKEN
Version 2.732 - macosx-unix-gnu-x86 [manyargs dload ptables applyhook cross]
(c)2000-2007 Felix L. Winkelmann compiled 2007-11-01 on michele-mac.local (Darwin)

#;1> (match-define (head . tail) ’(1 2 3))
#;2> (list head tail)
(1 (2 3))

Recently the implementation of match has been rejuvenated by Alex Shinn, who fixed a few
bugs and reimplemented everything in terms of syntax-rules macros, whereas the origi-
nal used define-macro: this modern implementation is also available as an R6RS library,
thanks to Derick Eddington and you can download it for here, if you want to use this matcher
with Ikarus.

Studying the documentation of match is certainly a good use of your time, and a recommended
reading; on the other hand, writing your own matcher relying on Scheme macros is even more
interesting. In the next paragraph I will implement a let+ macro with the full power of tuple
unpacking, and in future episodes I will implement a fully fledged list matcher.

86 Chapter 15. List destructuring

http://www.artima.com/weblogs/viewpost.jsp?thread=239699
http://citeseer.ist.psu.edu/rd/34737315%2C53980%2C1%2C0.25%2CDownload/http://citeseer.ist.psu.edu/cache/papers/cs/4091/ftp:zSzzSzftp.cs.rice.eduzSzpubliczSzlanguageszSzwrightzSzmatch.pdf/wright95pattern.pdf
http://citeseer.ist.psu.edu/rd/34737315%2C53980%2C1%2C0.25%2CDownload/http://citeseer.ist.psu.edu/cache/papers/cs/4091/ftp:zSzzSzftp.cs.rice.eduzSzpubliczSzlanguageszSzwrightzSzmatch.pdf/wright95pattern.pdf
http://bazaar.launchpad.net/~{}derick-eddington/ikarus-libraries/xitomatl/annotate/121?file_id=asmatch.sls-20080507230024-prlxlzdsg0x0ad3d-1
http://citeseer.ist.psu.edu/rd/34737315%2C53980%2C1%2C0.25%2CDownload/http://citeseer.ist.psu.edu/cache/papers/cs/4091/ftp:zSzzSzftp.cs.rice.eduzSzpubliczSzlanguageszSzwrightzSzmatch.pdf/wright95pattern.pdf

The Adventures of a Pythonista in Schemeland, Release 0.1

15.2 A list destructuring binding form (let+)

This paragraph will use a test-first approach, and will begin with a specification of how let+
is intended to work by means of tests. I am using here the minimal testing framework I have
introduced in episode #11. Here are the tests:

(test "no args"
(let+ 1); no bindings; return 1
1)

(test "name value"
(let+ (x 1) x); locally bind the name x to the value 1 and return it
1)

(test "one arg"
(let+ ((x) ’(1)) x); locally bind the name x to the value 1 and return it
1)

(test "two args"
(let+ ((x y) (list 1 2)) (list x y)); locally bind the names x and y
’(1 2))

(test "pair"
(let+ ((x . y) ’(1 2)) y)
’(2))

(test "nested"
(let+ ((x (y z)) ’(1 (2 3))) (list x y z)); bind x, y and z
’(1 2 3))

Here is an implementation satisfying those tests:

15.2. A list destructuring binding form (let+) 87

http://www.artima.com/weblogs/viewpost.jsp?thread=240833

The Adventures of a Pythonista in Schemeland, Release 0.1

(def-syntax let+
(syntax-match ()

(sub (let+ expr)
#’expr)

(sub (let+ (() lst) expr)
#’(if (null? lst) expr

(apply error ’let+ "Too many elements" lst)))
(sub (let+ ((arg1 arg2 rest) lst) expr)

#’(let ((ls lst))
(if (null? ls)

(apply error ’let+ "Missing arguments" ’(arg1 arg2 ...))
(let+ (arg1 (car ls))
(let+ ((arg2 rest) (cdr ls)) expr)))))

(sub (let+ (name value) expr)
#’(let ((name value)) expr)
(identifier? #’name)
(syntax-violation ’let+ "Argument is not an identifier" #’name))

(sub (let+ (name value) (n v) ... expr)
#’(let+ (name value) (let+ (n v) ... expr)))

))

It is not difficult to understand how the macro works by performing a few experiments
syntax-expand; for instance, let+ with a single argument expands as follows:

> (syntax-expand (let+ ((x) ’(1)) x))
(let ((ls ’(1)))

(if (null? ls)
(apply error ’let+ "Not enough elements" ’(x))
(let+ (x (car ls)) (let+ (() (cdr ls)) x))))

whereas let+ with a required argument and a variadic list of arguments expands as follows:

> (syntax-expand (let+ ((x . rest) ’(1)) (cons x rest)))
(let ((ls ’(1)))

(if (null? ls)
(apply error ’let+ "Not enough elements" ’(x))
(let+ (x (car ls)) (let+ (rest (cdr ls)) (cons x rest)))))

Notice that in this case the template (arg2 rest) has been replaced by rest,
since there are no arguments. This is the magic of the dots!

Finally, let us see what happens when we try to match a too short list:

> (let+ ((x y) ’(1)) x)
Unhandled exception
Condition components:

1. &error
2. &who: let+
3. &message: "Missing arguments"
4. &irritants: (y)

88 Chapter 15. List destructuring

The Adventures of a Pythonista in Schemeland, Release 0.1

or a too long list:

> (let+ ((x y) ’(1 2 3)) x)
Unhandled exception
Condition components:

1. &error
2. &who: let+
3. &message: "Too many elements"
4. &irritants: (3)

In the first case there an argument (y) in excess, not matched by any element; in the second
case, there is an element (3) in excess, not matched by any argument. The implementation
also checks (at compile time) that the passed arguments are valid identifiers:

> (let+ ((x y 3) ’(1 2 3)) x)
Unhandled exception
Condition components:

1. &who: let+
2. &message: "Argument is not an identifier"
3. &syntax:

form: 3
subform: #f

4. &trace: #<syntax 3>

As I said, Scheme pattern matching is not polymorphic: you cannot exchange a vector for a list
of viceversa:

> (let+ ((x (y z)) (list 1 (vector 2 3))) (list x y z))
Unhandled exception:
Condition components:

1. &assertion
2. &who: car
3. &message: "argument does not have required pair structure"
4. &irritants: (#(2 3))

The error message is clear, we also know that a car was involved, but unfortunately, it does
not give much information about where exactly the error happened :-(I was serious at the end
of episode #12, when I said that debugging macros is no fun: the problem is that the errors
happen in expanded code which is invisible to the programmer.

In the next episode I will give a few examples of usage of let+ which will make clear why it
is so useful. See you next time!

15.2. A list destructuring binding form (let+) 89

http://www.artima.com/weblogs/viewpost.jsp?thread=240836

The Adventures of a Pythonista in Schemeland, Release 0.1

90 Chapter 15. List destructuring

CHAPTER

SIXTEEN

MULTIPLE VALUES (AND
OPT-LAMBDA)

This episode is a direct continuation of latest issue: it gives example of use of the destructuring
bind form let+ introduced there. I also discuss multiple values, unary functions and functions
with optional arguments.

16.1 list destructuring versus let-values

There is a feature of Scheme that I never liked, i.e. the fact that functions (more in general con-
tinuations) can return multiple values. Multiple values are a relatively late addition to Scheme -
they entered in the standard with the R5RS report - and there has always been some opposition
against them (see for instance this old post by Jeffrey Susskind). I personally see multiple val-
ues as a wart of Scheme, a useless complication motivated by premature optimization concerns.

It is possible to define functions returning multiple values as follows:

> (define (return-three-values)
(values 1 2 3))

> (return-three-values)
1
2
3

In order to receive the values a special syntax is needed, and you cannot do things like the
following:

> (apply + (return-three-values))
Unhandled exception
Condition components:

1. &assertion
2. &who: apply
3. &message: "incorrect number of values returned to single value context"
4. &irritants: ((1 2 3))

Instead, you are forced to use let-values or other constructs which are able to accept
values:

91

http://groups.google.com/group/comp.lang.scheme/msg/7335da47820deff4?hl=en

The Adventures of a Pythonista in Schemeland, Release 0.1

> (let-values (((x y z) (return-three-values))) (+ x y z))
6

In this series I will never use functions returning multiple values, except the ones in the Scheme
standard library (this is why I am forced to talk about let-values). Instead of using multiple
values, I will return a list of values and I will destructure it with let+. For instance, I will write

> (let+ ((a b) (list 1 2)) (cons a b))
(1 . 2)

instead of

> (let-values (((a b) (values 1 2))) (cons a b))
(1 . 2)

let+ is more elegant and more general than let-values: everything let-values can
do, let+ can do too. let+ can even faster - in some implementations and in some cases. Here
is a benchmark in Ikarus Scheme:

running stats for (repeat 10000000 (let-values (((x y z) (values 1 2 3))) ’dummy)):
no collections
276 ms elapsed cpu time, including 0 ms collecting
277 ms elapsed real time, including 0 ms collecting
0 bytes allocated

running stats for (repeat 10000000 (let+ ((x y z) (list 1 2 3)) ’dummy)):
58 collections
211 ms elapsed cpu time, including 42 ms collecting
213 ms elapsed real time, including 43 ms collecting
240016384 bytes allocated

As you see, let+ takes only 211 ms to unpack a list of three elements ten million times;
let-values would take 276 ms instead. On the other hand, let+ involves garbage col-
lection (in our example 24 bytes are allocate per cycle, and thats means 240 million of bytes)
and depending on the situations and the implementation this may cause a serious slowdown.
You may find much better benchmarks than mine in this thread on comp.lang.scheme and you
will see that you can get any kind of results. let-values seems to be slow in Ikarus and in
Ypsilon with the default optimization options; it can be faster in other implementations, or in
the same implementations with different options or in different releases.

However, those are implementation details. The important thing in my view is the conceptual
relevance of a language construct. Conceptually I think the introduction of multiple values in
Scheme was a mistake, since it added nothing that could not be done better with containers. I
think functions should always return a single value, possibly a composite one (a list, a vector,
or anything else). Actually, I am even more radical than that and I think that functions should
take a single value, as in SML and Haskell.

92 Chapter 16. Multiple values (and opt-lambda)

http://groups.google.com/group/comp.lang.scheme/browse_frm/thread/ba8873b2f955af67

The Adventures of a Pythonista in Schemeland, Release 0.1

16.2 Variadic functions from unary functions

If you have a minimalistic mindset (as I have) you will recognize that multiple argument func-
tions are useless since they can be implemented as unary functions performing destructuring.
Here is a simple implementation of the idea:

(def-syntax (fn (arg rest) body body* ...)
#’(lambda (x)

(let+ ((arg rest) x)
(begin body body* ...))))

(def-syntax (define/fn (name arg rest) body body* ...)
#’(define name (fn (arg rest) body body* ...)))

Here are a few examples of usage:

> (define/fn (double x) (* 2 x))
> (double ’(1))
2

> (define/fn (sum . vals) (apply + vals))
> (sum ’(1 2 3))
6

> (define/fn (sum-2D (x1 y1) (x2 y2)) (list (+ x1 x2) (+ y1 y2)))
> (sum-2D ’((1 2)(3 4)))
(4 6)

All the functions defined via define/fn take a single argument, a list, which is then destruc-
tured according to the declared structure. double expects a list with a single element named
x; sum expects a list with a variable number of elements val; sum-2D expects a two-element
lists made of two-element lists named (x1 y1) and (x2 y2) respectively. You can easily
imagine more complex examples with deeply nested lists.

16.2. Variadic functions from unary functions 93

The Adventures of a Pythonista in Schemeland, Release 0.1

It is interesting to notice that Python has the list destructuring/tuple unpacking functionality
built-in:

>>> def sum2D((x1, y1), (x2, y2)):
... return x1 + x2, y1 + y2
...
>>> sum2D((1,2),(3,4))
(4, 6)

This is valid Python code in all versions of Python before Python 3.0. However, in Python 3X
this functionality has been removed for lack of use (sic).

The advantage of unary functions is that they are easier to compose, and many functional
patterns (including currying described in episode #14) becomes possible. However, Scheme is
not ML or Haskell, so let us accept functions with multiple arguments and let us take advantage
of them to implement optional arguments. This is the subject of the next paragraph.

16.3 Further examples of destructuring: opt-lambda

A weekness of standard Scheme is the lack of functions with default arguments and keyword
arguments. In practice, this is a minor weakness since there many libraries implementing the
functionality, although in different ways, as usual. I recommend you to look at SRFI-88 and
SRFI-89 for more context. Here I will implement equivalent functionality from scratch, as yet
another exercise to show the power of let+. Let me start from an example, to make clear the
intended functionality. Let me define a function f with optional arguments as follows:

(define/opt (f x y (opt (u 1) (v 2)) . rest)
(printf "Required: ~a Optional: ~a Other: ~a\n"

(list x y) (list u v) rest))

Here x and y are required arguments, u and v are optional arguments and rest are variadic
arguments. If you do not provide an optional argument, its default value is be used instead, and
f behaves as follows:

> (f ’a ’b ’c ’d ’e ’f)
Required: (a b) Optional: (c d) Other: (e f)
> (f ’a ’b ’c)
Required: (a b) Optional: (c 2) Other: ()
> (f ’a ’b)
Required: (a b) Optional: (1 2) Other: ()
> (f ’a)
Unhandled exception
Condition components:

1. &assertion
2. &who: apply
3. &message: "incorrect number of arguments"
4. &irritants: (#<procedure f> 1)

94 Chapter 16. Multiple values (and opt-lambda)

http://www.artima.com/weblogs/viewpost.jsp?thread=249198
http://srfi.schemers.org/srfi-88/srfi-88.html
http://srfi.schemers.org/srfi-89/srfi-89.html

The Adventures of a Pythonista in Schemeland, Release 0.1

It is clear that in order to implement the functionality the trick is to override the defaults of the
optional argument with the passed arguments, if any. To this aim we will need the following
helper function:

;;(override-with ’(a b) ’(1 2 3)) => ’(a b 3)
(define (override-with winner loser)

(let ((w (length winner)) (l (length loser)))
(if (>= w l)

winner ; winner completely overrides loser
(append winner (list-tail loser w)))))

(we introduced the list-tail function in episode #13). At this point it is easy to define an
opt-lambda macro doing the job:

(def-syntax opt-lambda
(syntax-match (opt)

(sub (opt-lambda (r1 ... (opt (o1 d1) ...) . rest) body1 body2 ...)
#’(lambda (r1 args)

(let+ ((o1 rest) (override-with args (list d1 ...)))
(begin body1 body2 ...))))))

define/opt is just sugar over opt-lambda:

(def-syntax (define/opt (name . args) body1 body2 ...)
#’(define name (opt-lambda args body1 body2 ...)))

I should notice that strictly speaking you do not need a full restructuring form to implement
opt-lambda: since override-with-args returns a flat list, a form which is able to
destructure flat list is enough. You could implement it easily enough:

(def-syntax (let- (name rest) lst expr)
#’(apply (lambda (name rest) expr) lst))

However let+ subsumes the functionality of let- and I do not see the point of introducing
yet another binding form, except for sake of the exercise. Strangely enough, let- looks even
slower than let+ in Ikarus:

running stats for (repeat 10000000 (let- (x y z) (list 1 2 3) ’dummy)):
58 collections
324 ms elapsed cpu time, including 16 ms collecting
324 ms elapsed real time, including 22 ms collecting
240004096 bytes allocated

But please don’t trust benchmarks! ;)

16.3. Further examples of destructuring: opt-lambda 95

http://www.artima.com/weblogs/viewpost.jsp?thread=248953

The Adventures of a Pythonista in Schemeland, Release 0.1

96 Chapter 16. Multiple values (and opt-lambda)

CHAPTER

SEVENTEEN

LIST COMPREHENSION

This episodes explains how to implement a functional list comprehension syntax in
Scheme. The difference with Python list comprehension is also explained. More-
over, I have decided to distribute the code create for this series as a library:
http://www.phyast.pitt.edu/~micheles/scheme/aps.zip

17.1 The APS library

The R6RS standard provides a few list utilities; the SRFI-1 provides a few others. Nevertheless
the offering is incomplete: in particular a list comprehension syntax is missing. Therefore I
have decided to distribute a library providing list comprehension and more. Such library will
be useful for future episodes of my Adventures, in particular for part IV, about advanced macro
programming. After all, macro programming is nothing else than manipulation of code seen as
a nested list of expressions.

With a remarkable lack of fantasy, I have decided to call the library list-utils and to put
it in a package called aps (aps of course stands for Adventures of a Pythonista in Schemeland
and not for American Physical Society ;). In this way I will be contributing to the entropy and I
will be littering the world with yet another version of utilities that I would rather not write, but
this cannot be helped :-(

97

http://www.phyast.pitt.edu/~{}micheles/scheme/aps.zip
http://srfi.schemers.org/srfi-1/srfi-1.html

The Adventures of a Pythonista in Schemeland, Release 0.1

For your convenience, I have added in the library the Python-style utilities range, zip,
transpose, enumerate I did discuss in episodes 7 and 8, as well as the let+ list de-
structuring macro I introduced in episode 15. I have also added the reference implementation
of SRFI-26 i.e. the cut and cute macros described in episode _14. Moreover, the aps pack-
age contains the testing framework discussed in episode 11, renamed as (aps easy-test)
and slightly improved (the improvement consists in the addition of catch-error macro,
which captures the error message). Finally, the aps library includes a more recent version of
sweet-macros than the one I discussed in episode 9, so you should replace the old one if
you have it.

You can download the package from here: http://www.phyast.pitt.edu/~micheles/scheme/aps.zip

Just unzip the archive and put the files somewhere in your path:

$ cd <DIRECTORY-IN-YOUR-SCHEME-PATH>
$ unzip aps.zip
inflating: sweet-macros.sls
inflating: aps/cut.sls
inflating: aps/easy-test.sls
inflating: aps/list-utils.sls
...

You can test the library as follows:

$ ikarus --r6rs-script aps/test-all.ss
.........................
Run 25 tests. 25 passed, 0 failed

Currently all the tests pass with the latest development version of Ikarus. They also pass with
the latest development version of Ypsilon and with PLT Scheme version 4, except for the test
zip-with-error:

(test "zip-with-error"
(catch-error (zip ’(a b c) ’(1 2)))
"length mismatch")

However, this is an expected failure, since the error messages are different between Ikarus,
Ypsilon and PLT Scheme. Clearly, checking for an implementation-dependent error message
is a bad idea and I could have thought of a better test, but I am lazy; moreover, I do not want to
discuss the error management mechanism in Scheme right now, since it is quite advanced and
it is best deferred to future episodes.

Larceny Scheme is not supported since it does not support the .IMPL.sls convention. When
it does, it could be supported as well, expecially if I get some help from my readers.

If you are wondering about the so-called .IMPL.sls convention, let me explain that
it is a non-standard convention to enable portability about different R6RS implementa-
tions. In particular the aps library contains three modules compat.ikarus.sls,
compat.mzscheme.sls and compat.ypsilon.sls following the convention. When I
write (import (aps compat)) in Ikarus, the file compat.ikarus.sls is read; when
I import (aps compat) in PLT, the file compat.mzscheme.sls is read; and finally for

98 Chapter 17. List comprehension

http://www.artima.com/weblogs/viewpost.jsp?thread=240781
http://www.artima.com/weblogs/viewpost.jsp?thread=240793
http://www.artima.com/weblogs/viewpost.jsp?thread=249681
http://srfi.schemers.org/srfi-26/srfi-26.html
http://www.artima.com/weblogs/viewpost.jsp?thread=240833
http://www.artima.com/weblogs/viewpost.jsp?thread=240804
http://www.phyast.pitt.edu/~{}micheles/scheme/aps.zip

The Adventures of a Pythonista in Schemeland, Release 0.1

Ypsilon the file compat.ypsilon.sls is read. This mechanism allows for writing com-
patibility wrappers; for instance, here is the content of compat.mzscheme.sls:

#!r6rs
(library (aps compat)
(export printf format gensym pretty-print)
(import (rnrs) (only (scheme) printf format gensym pretty-print)))

Basically all decent Scheme implementations provide printf, format, gensym and
pretty-print functionality, usually with these names too, but since they are not standard
(which is absurd IMO) one is forced to recur to do-nothing compatibility libraries, which just
import the functionality from the implementation-specific module and re-export it :-(

You can try the (aps list-utils) library as follows:

> (import (aps list-utils))
> (enumerate ’(a b c))
((0 a) (1 b) (2 c))

Notice that you should consider the aps libraries as experimental and subject to changes, at
least until I finish the series, in an indetermined and far away future ;)

17.2 Implementing list comprehension

The most important facility in the (aps list-utils) library is a syntax for list compre-
hension. Perhaps list comprehension is not the greatest discovery in computer science since
sliced bread, but I find them enormously more readable than map and filter, which I use
only in the simplest case. Nowadays, a lot of languages offer a syntax for list comprehension,
starting from Haskell to Python, Javascript and C#.

Scheme does not provide a list comprehension syntax out of the box, but it is a simple exercise
in macrology to implement them. Actually there are many available implementations of list
comprehension in Scheme. There is even an SRFI (SRFI-42 Eager Comprehensions) which
however I do not like at all since it provides too much functionality and an ugly syntax.

Therefore, here I will pursue a different approach to list comprehension, which is shamelessly
copied from the work of Phil Bewig, with minor simplifications, and the usage of let+ instead
of regular let.

17.2. Implementing list comprehension 99

http://srfi.schemers.org/srfi-42/srfi-42.html
http://schemephil.googlepages.com/

The Adventures of a Pythonista in Schemeland, Release 0.1

Here is the implementation

(def-syntax list-of-aux
(syntax-match (in is)

(sub (list-of-aux expr acc)
#’(cons expr acc))

(sub (list-of-aux expr acc (var in lst) rest ...)
#’(let loop ((ls lst))

(if (null? ls) acc
(let+ (var (car ls))

(list-of-aux expr (loop (cdr ls)) rest ...)))))

(sub (list-of-aux expr acc (var is exp) rest ...)
#’(let+ (var exp) (list-of-aux expr acc rest ...)))

(sub (list-of-aux expr acc pred? rest ...)
#’(if pred? (list-of-aux expr acc rest ...) acc))

))

100 Chapter 17. List comprehension

The Adventures of a Pythonista in Schemeland, Release 0.1

(def-syntax (list-of expr rest ...)
#’(list-of-aux expr ’() rest ...))

We see here the usage of an helper macro list-of-aux and the usage of an accumula-
tor acc to collect the arguments of the macro. You may understand how it works by ju-
dicious use of syntax-expand; for instance (list-of-aux (* 2 x) ’() (x in
(range 3))) expands into

(let loop ((ls (range 3)))
(if (null? ls)

’()
(let+ (x (car ls))
(list-of-aux (* 2 x) (loop (cdr ls))))))

which builds the list (0 2 4), since list-of-aux expands to the list constructor cons.
Here are a few other test cases you may play with:

(test "double comprehension"
(list-of (list x y) (x in ’(a b c)) (y in ’(1 2)))
’((a 1) (a 2) (b 1) (b 2) (c 1) (c 2)))

(test "double comprehension with constraint"
(list-of (list x y) (x in (range 3)) (y in (range 3)) (= x y))
’((0 0) (1 1) (2 2)))

(test "comprehension plus destructuring"
(list-of (+ x y) ((x y) in ’((1 2)(3 4))))
’(3 7))

The macro is able to define nested list comprehensions at any level of nesting; the rightmost
variables corresponds to the inner loops and its is even possible to implement constraints and
destructuring: basically, we have the same power of Python list comprehensions, except that
that the objects in the in clause must be true lists, whereas in Python they can be generic
iterables (including infinite ones).

17.3 A tricky point

On the surface, the list-of macro looks the same as Python list comprehension; however,
there a few subtle differences under the hood, since the loop variables are treated differently.
You can see the different once you consider a list comprehension containing closures. In
Scheme a list comprehensions of closures works as you would expect:

> (define three-thunks (list-of (lambda () i) (i in ’(0 1 2))))
> (list-of (t) (t in three-thunks))
(0 1 2)

In Python instead you get a surprising result (unless you really know how the for loop work):

17.3. A tricky point 101

The Adventures of a Pythonista in Schemeland, Release 0.1

>>> three_thunks = [(lambda : i) for i in [0, 1, 2]]
>>> [f() for f in three_thunks]
[2, 2, 2]

The reason is that Python is not really a functional language, so that the for loop works by
mutating the loop variable i: since the thunk is called after the end at the loop, it sees the latest
value of i, i.e. 2. The same is true in Common Lisp if you use the LOOP macro. In Scheme
instead (and in Haskell, the language that invented list comprehension) there is no mutation of
the loop variable: at each iteration a new fresh i is created. You can emulate in Python what
Scheme does for free by using two lambdas:

>>> three_thunks = [(lambda x : (lambda : x))(i) for i in [0, 1, 2]]
>>> [f() for f in three_thunks]
[0, 1, 2]

(another way of course is to use the well know default argument trick, lambda i=i: i,
but that is not a direct translation of how Scheme of Haskell work by introducing a new scope
at each iteration).

On the other hand, Python wins on Scheme for what concern polymorphism: in Python is it
possible to iterate on any iterable without any effort, whereas in Scheme you need to specify
the data structure you are iterating over. For instance, if you want to iterate on vectors you
need to define a vector-of macro for vector comprehension; if you want to interate on
hash table you need to define an hash-table comprehension macro hash-table-of, and so
on. Alternatively, you must convert you data structure into a list and use list-of. This is
annoying. In Python on the contrary there is a common protocol for all iterable objects so that
the same for syntax can be used everywhere.

The list comprehension defined here only works for finite iterables; Python however has also
a generator comprehension that works on potentially infinite iterables. Scheme too allows to
define infinite iterables, the so called streams, which however are a functional data structure
quite different from Python generators, which are imperative. Discussing streams will fill the
next episode. For the moment, have patience!

102 Chapter 17. List comprehension

CHAPTER

EIGHTEEN

STREAMS

This episode is about streams, a typical data structure of functional languages. The differences
between functional streams and imperative iterators are discussed. En passant, I give a solution
of the classic eight queens problem.

18.1 The eight queens puzzle

Before starting the analysis of streams, I want to close the discussion about list comprehension.
Last week I had no time to discuss one of the conveniences of the list-of macro, i.e. the
ability to define internal variables with a (name is value) syntax. To give an example of
that, I have decided to show you a solution of the infamous eight-queens puzzle that you will
find in all the theoretical textbooks about programming.

In my opinion the eight queens puzzle is not so interesting, however, if you want to study
Scheme, you will find this kind of academical examples everywhere, so I made my concession
to the tradition. In particular, the official document about streams in R6RS Scheme, i.e. SRFI-
41, contains a solution of the eight queens puzzle by using the same algorithm I am presenting
here, but with streams instead of lists. You may want to compare the list solution to the stream
solution.

Figure 18.1: Animation taken from Wikipedia

The algorithm is based on a clever trick which is quite common in the mathematical sciences:
to introduce an additional degrees of freedom which apparently makes the problem harder, but
actually gives us a fast lane towards the solution. Here the clever idea is to change the question
and to considered not a single square chessboard, but a family of rectangular chessboards with
n rows and N columns (with n<=N and N=8). Of course we are interested in the n=8 solution;
however, keeping n generic helps, since an easy solution can be found for small n (in particular
for n=1) and we can figure out a recursive algorithm to build the n+1 solution starting from the
n=1 solution, until we reach n=8.

Let us express a solution as a list of column positions for the queens, indexed by row.
We will enumerate rows and columns starting from zero, as usual. The case n=1
(putting a queen on a 1x8 chessboard) has 8 solutions, expressible as the list of lists
’((0)(1)(2)(3)(4)(5)(6)(7)) - the first (and only) queen will be at row 0 and
columns 0, 1, 2, 3, 4, 5, 6 or 7. If there are two queens (n=2) one has more solutions; for

103

http://en.wikipedia.org/wiki/Eight_queens_puzzle
http://srfi.schemers.org/srfi-41/srfi-41.html
http://srfi.schemers.org/srfi-41/srfi-41.html

The Adventures of a Pythonista in Schemeland, Release 0.1

instance the first queen (i.e. the one at row 0) could be at column 0 and the second queen
(i.e. the one at row 1) at column 2, and a solution is (0 2). The solutions for the n-queens
problem are found by looking at the possible new configurations, starting from the solutions of
the n-1-queens problem and by discarding the forbidden ones.

A configuration is forbidden if two queens are on the same column (by construction they cannot
be in the same row, since they are indexed by row) or on the same diagonal. The condition being
on the same diagonal translates into the difference between the row coordinates is the same
as the difference between the column coordinates, in absolute value. Here is the condition
expressed in Scheme and making use of list-of and of the is syntax, where new-row and
new-col is the tentative position of the n-th queen and safe-config is a solution of the
n-1-queen problem:

(define (all-true lst) ;; a Python-like all, true if all elements are true
(for-all (lambda (x) x) lst))

(define (safe-queen? new-row new-col safe-config)
;; same-col? and same-diag? are boolean inner variables
(all-true (list-of (not (or same-col? same-diag?))

((row col) in (enumerate safe-config))
(same-col? is (= col new-col))
(same-diag? is (= (abs (- col new-col)) (abs (- row new-row))))
)))

safe-queen? checks that the new configuration is safe by looking at all the queens already
placed. We can find all the solutions with a recursive function:

(define (queens n N)
(if (zero? n) ’(())

(list-of (append safe-config (list col))
(n-1 is (- n 1)); inner variable
(safe-config in (queens n-1 N))
(col in (range N))
(safe-queen? n-1 col safe-config)
)))

In particular we can check that the n=8 problem has 92 solutions:

> (length (queens 8 8))
92

I refer you to Wikipedia for nice drawings of the solutions.

18.2 Iterators and streams

Python programmers are well acquainted with generators and iterators, and they know every-
thing about lazyness. In particular they know that the Python iterator

104 Chapter 18. Streams

The Adventures of a Pythonista in Schemeland, Release 0.1

>>> it123 = iter(range(1, 4))

is left unevaluated until its elements are requested. However, the Python way is only superfi-
cially similar to the truly functional way, found in Haskell or in Scheme. Actually, when Python
copies from functional languages, it does so in an imperative way. Here the iterator it123 is
an object with an internal state; there is a next method which allows to change the state. In
particular, if you call .next() twice, the same iterator returns different values:

>>> it123.next()
1
>>> it123.next()
2

Thus, Python iterators are not functional. Functional languages such as Scheme ML and
Haskell have no imperative iterators: they have streams instead. Ikarus comes with a built-in
stream library, so that I can give a concrete example right now (of course you can use streams
in other implementations simply by using the reference implementation described in SRFI-41).
Here is how to define a stream on the numbers 1,2,3:

> (import (streams))
> (define str123 (stream-range 1 4))

There is no equivalent of the next method for streams, since there is no concept of internal
state of a stream. However, there is a stream-car procedure which takes the first element
of a stream, and a stream-cdr procedure returning another stream which lacks the first
element. Both procedures are functional, i.e. they act without mutating the original stream
object in any way. In particular, if you apply stream-car twice, you get always the same
result:

> (stream-car str123)
1
> (stream-car str123)
1

In Python, looping on an iterator exhausts it, and running twice the same loop can have unex-
pected results:

>>> chars = iter(’abc’)
>>> for c in chars: print c,
...
a b c
>>> for c in chars: print c,
...

The first time the loop prints “a b c”, but the second time it does not print anything. In a
functional language the same code must have the same effect, it cannot depend from the inner
state of the stream. Actually, this is what happens:

18.2. Iterators and streams 105

http://srfi.schemers.org/srfi-41/srfi-41.html

The Adventures of a Pythonista in Schemeland, Release 0.1

> (define chars (stream #\a #\b #\c))
> (stream-for-each display chars)
abc> (stream-for-each display chars)
abc>

stream-for-each is an utility from SRFI-41, with obvious meaning. Actually SRFI-41
offers a series of convenient features. The most useful one is stream comprehension, which
is very similar to list comprehension. Since I copied the list comprehensions syntax from the
work of Phil Bewig, which is the author of the stream library, it is not surprising that the
syntax looks the same. The difference between list comprehensions and stream comprehension
is that stream comprehension is lazy and can be infinite. This is similar to Python generator
expressions (genexps). For instance, in Python we can express the infinite set of the even
number as a genexp

>>> import itertools
>>> even = (i for i in itertools.count(0) if i % 2 == 0)

whereas in Scheme we can express it as a stream:

> (define even (stream-of i (i in (stream-from 0)) (zero? (modulo i 2))))

However the Scheme stream is immutable, whereas the Python genexp is not. It is possible
to loop over a stream with stream-for-each, stream-map and stream-fold; such
higher order functions work as they counterparts for lists, but they return streams. There is
also a stream-let syntax, which is stream version of named let, useful when applying the
accumulator pattern to streams, and a function stream->list with does the obvious.

I am not explaining all the fine details, since the documentations of the SRFI is pretty good and
exhaustive. As I anticipated, there is also a solution of the eight queen problem using streams
that you may look at. The difference between the stream solution and the list comprehension
solution is that the first one is lazy, i.e. you get one solution at the time, on demand, whereas the
second one is eager: it computes all the solutions in a single bunch, and returns them together.

18.3 Lazyness is a virtue

The basic feature of streams, apart from immutability, is true lazyness. Streams are truly lazy
since they perform work only when forced - i.e. only when an element is explicitly requested
- and even there if they had already accomplished a task they do not perform it again - i.e.
they memoize the elements already computed (and this is not the case for Python iterators). An
example should make these two points clear. Let us define a work procedure which protests
when called:

> (define (work i)
(display "Life is hard!\n") i)

106 Chapter 18. Streams

http://srfi.schemers.org/srfi-41/srfi-41.html
http://srfi.schemers.org/srfi-41/srfi-41.html
http://schemephil.googlepages.com/

The Adventures of a Pythonista in Schemeland, Release 0.1

The protest is expressed an a side effect; other than that, the function, does not perform too
much, since it just returns the parameter got in input, but, you know, there is no limit to lazy-
ness!

Now let me define a stream which invokes the function work three times:

> (define work-work-work (stream-of (work i) (i in (stream-range 1 4))))

Since the stream is lazy, it does not perform any work at definition time. It starts working only
when elements are expressly required:

> (stream->list work-work-work)
Life is hard!
Life is hard!
Life is hard!
(1 2 3)

Now the values 1, 2, 3 have been memoized: if we try to loop again on the stream, it will return
the precomputed values:

> (stream->list work-work-work)
(1 2 3)

This shows clearly that the function work is not called twice. It is also clear that, had work
some useful side effect (such as writing a log message) then using a stream would not be a
good idea, since you could loose some message. Streams are a functional data structure and
it is good practice to use only pure functions with them, i.e. functions without side effects.
Moreover, I should also notice that the memoization property implies that a stream can take an
unbound amount of memory, whereas an imperative iterator has no such issue.

I could say more. In particular, there are lots of caveats about streams, which are explained in
detail in the SRFI-41 documentation (so many caveats that I personally do not feel confident
with streams). I am also sure that Pythonistas would be even more interested in true generator-
expressions and generators, which can be definite in Scheme by using continuations. However,
investigating that direction will astray us away from our path. The intention of this third cycle
of Adventures was just to give a feeling of what does it mean to be a true functional language,
versus being an imperative language with a few functional-looking constructs.

With this episode this cycle of our Adventures ends, but a new one will begin shortly. Stay
tuned!

18.3. Lazyness is a virtue 107

http://srfi.schemers.org/srfi-41/srfi-41.html

The Adventures of a Pythonista in Schemeland, Release 0.1

108 Chapter 18. Streams

CHAPTER

NINETEEN

THE R6RS MODULE SYSTEM

For nearly 30 years Scheme lived without a standard module system. The consequences of this
omission were the proliferation of dozens of incompatible module systems and neverending
debates. The situation changed with the R6RS report: nowadays Scheme has an official module
system, finally.

Unfortunately the official module system is not used by all Scheme implementations, and it is
quite possible that some implementation will never support it. For instance Chicken, a major
implementation, just released version 4, which includes a brand new module system not com-
patible with the R6RS system. You should be aware that the module system (and actually the
whole of the R6RS standard) is controversial, and there are good reasons why it is so.

I cannot do anything about the political issues, but I can do something about the technical
issues, by explaining the subtle points and by documenting the most common pitfalls. It will
take me six full episodes to explain the module system and its trickiness, especially for macro
writers who want to write portable code.

109

http://www.call-with-current-continuation.org/

The Adventures of a Pythonista in Schemeland, Release 0.1

19.1 Modules are not first class objects

Since the title of this series is The Adventures of a Pythonista in Schemeland let me begin my
excursion about the R6RS module system by contrasting it with the Python module system.

The major difference between Python modules and Scheme modules is that Python modules are
first class runtime objects which can be passed and returned from functions, as well as modified
and introspected freely; Scheme modules, instead, are compile time entities which cannot be
imported at runtime, nor passed to functions or returned from functions; moreover they cannot
be modified and cannot be introspected.

Python modules are so flexible because they are basically dictionaries. It would not be diffi-
cult to implement a Python-like module system in Scheme, by making use of hash-tables, the
equivalent of dictionaries. However, the standard module system does not follow this route, be-
cause Scheme modules may contain macros which are not first class objects, therefore modules
cannot be first class objects themselves [some may argue that having macros which are not first
class objects is the root of all evil, and look for alternative routes with macro-like constructs
which are however first class objects; however, I do not want to open this particular can of
worms here].

Since Scheme modules are not first class objects it is impossible to add names dynamically to
a module, or to replace a binding with another, as in Python. It is also impossible to get the list
of names exported by a module: the only way is to look at the export list in the source code. It
is also impossible to export all the names from a module automatically: one has to list them all
explicitly.

In general Scheme is not too strong at introspection, and that it is really disturbing to me since
it is an issue that could be easily solved. For instance, my sweet-macros library provides
introspection features, so that you can ask at runtime, for instance from the REPL, what are
the patterns and the literals accepted by a macro, its source code and its associated transformer,
even if the macro is a purely compile time entity. It would be perfectly possible to give an
introspection API to every imported module. For instance, every module could automagically
define a variable - defined both at runtime and compile time - containing the full list of exported
names and there could be some builtin syntax to query the list.

But introspection has been completely neglected by the current standard. One wonders how
Schemers cope with large libraries/frameworks like the ones we use every day in the enterprise
world, which export thounsands and thousands of names in hundreds and hundreds of modules.
Let’s hope for something better in the future.

I also want to point out a thing that should be obvious: if you have a Scheme library lib.sls
which defines a variable x, and you import it with a prefix lib., you can access the variable
with the Python-like syntax lib.x. However, lib.x in Scheme means something completely
different from lib.x in Python: lib.x in Scheme is just a name with a prefix, whereas
lib.x in Python means “take the attribute x of the object lib” and that involves a function
call. In other words, Python must perform an hash table lookup everytime you use the syntax
lib.x, whereas Scheme does not need to do so.

I should also points out that usually (and unfortunately) in the Scheme world people do not use
prefixes; by default all exported names are imported, just as it is the case for Python when the
(discouraged) style from lib import * is used.

110 Chapter 19. The R6RS module system

The Adventures of a Pythonista in Schemeland, Release 0.1

19.2 Compiling Scheme modules vs compiling Python
modules

Let me continue my comparison between Python modules and Scheme modules, by comparing
the compilation/execution mechanism in the two languages. I will begin from Python, by giving
a simplified description which is however not far for the truth.

When you run a script script.py depending on some library lib.py, the Python inter-
preter searches fo a bytecode-compiled file lib.pyc, updated with respect to the the source
file lib.py; if it finds it, it imports it, otherwise it compiles the source file on-the-fly, gener-
ates a lib.pyc file and imports it. A bytecompiled file is updated with respect to the source
file if it has been generated after the source file; if you modify the source file, the lib.pyc
file becomes outdated: the Python interpreter is smart enough to recognize the issue and to
seamlessly recompile lib.pyc.

In Scheme the compilation process is very much implementation-dependent. Here I will give
some example of how things work in three representative R6RS-conforming implementations,
Ikarus, Ypsilon and PLT Scheme/mzscheme.

Ikarus has two modes of operation; by default it just compiles everything from scratch, without
using any intermediate file. This is possible since the Ikarus compiler is very fast. However,
this mechanism does not scale; if you have very large libraries, it does not make sense to recom-
pile everything every time you add a little script. Therefore Ikarus (in the latest development
version) added a mechanism similar to the Python one; if you have a file script.ss which
depends on a library lib.sls and run the command

$ ikarus --compile-dependencies script.ss
Serializing "./lib.sls.ikarus-fasl" ...

the compiler will automatically (re)generate a precompiled file lib.sls.ikarus-fasl
from the source file lib.sls as needed, by looking at the time stamps. Exactly the same as
in Python. The only difference is that Python compiles to bytecode, whereas Ikarus compile to
native code.

Notice that whereas in theory Ikarus should always be much faster of Python, in practice this
is not guaranteed: a lot of Python programs are actually calling underlying C libraries, so that
Python can be pretty fast in some cases (for instance in numeric computations using numpy).

All I said for Ikarus, can be said from Ypsilon, with minor differences. Ypsilon compiles to
bytecode, like Python. Precompiled files are automatically generated without the need to spec-
ify any flag, as in Python; however they are stored in a so called auto-compile-cache directory,
which by default is situated in $HOME/.ypsilon. The location can be changed by setting the
environment variable YPSILON_ACC or by passing the --acc=dir argument to the Ypsilon
interpreter. It is possible to disable the cache and to clear the cache; if you are curious about
the details you should look at the Ypsilon manual (man ypsilon).

PLT Scheme/mzscheme works in a slightly different way. The command

$ plt-r6rs script.ss

interprets the script and its dependencies on the fly. The command

19.2. Compiling Scheme modules vs compiling Python modules 111

The Adventures of a Pythonista in Schemeland, Release 0.1

$ plt-r6rs --compile script.ss

compiles the script and its dependencies, and stores the compiled file in the collects directory,
which on my system is in $HOME/.plt-scheme/4.1.2/collects. Each library has its
own directory of compiled files.

19.3 Compiling is not the same than executing

There are other similarities between a Python (bytecode) compiler and a Scheme compiler. For
instance, they are both very permissive, in the sense that they flag very few errors at compile
time. Consider for instance the following Python module:

$ cat lib.py
x = 1/0

The module contains an obvious error, that in principle should be visible to the (bytecode)
compiler. However, the compiler only checks that the module contains syntactically correct
Python code, it does not evaluate it, and generates a lib.pyc file without complaining:

$ python -m py_compile lib.py # generates lib.pyc without errors

The error will be flagged at runtime, only when you import the module:

$ python -c"import lib"
Traceback (most recent call last):

File "<string>", line 1, in <module>
File "lib.py", line 1, in <module>

x = 1/0
ZeroDivisionError: integer division or modulo by zero

R6RS Scheme uses a similar model. Consider for instance the library

$ echo lib.sls
#!r6rs
(library (lib)
(export x)
(import (rnrs))
(define x (/ 1 0)))

and the script

$ echo script.ss
(import (rnrs) (lib))

You can compile the script and the library without seeing any error:

112 Chapter 19. The R6RS module system

The Adventures of a Pythonista in Schemeland, Release 0.1

$ plt-r6rs --compile script.ss
[Compiling ./script.ss]
[Compiling ./.plt-scheme/4.1.2/collects/lib/main.sls]

Running the script however raises an error:

$ plt-r6rs script.ss
/: division by zero

Like in Python, the error is raised when the module is imported (the technical name in Scheme
is instantiated).

However, there is a gray area of the R6RS module system here, and implementations are free
to not import unused modules. To my knowledge, Ikarus is the only implementation making
using of this freedom. If you run

$ ikarus --r6rs-script script.ss

no error is raised. Ikarus is just visiting the module, i.e. taking notes of the names exported by
it and of the dependencies, but the module is not evaluated, because it is not used. However,
if you use it, for instance if you try to access the x variable, you will get the division error at
runtime:

$ echo script.ss
(import (rnrs) (prefix (lib) lib:))
(begin

(display "running ...\n")
(display lib:x))

$ ikarus --r6rs-script script.ss
Unhandled exception:
Condition components:

1. &assertion
2. &who: /
3. &message: "division by 0"
4. &irritants: ()

Here I have used an import prefix lib:, just to be more explicit. Another difference between
Ikarus and PLT is that in PLT both the script and the library are compiled, whereas in Ikarus
only the library is compiled. In the next episodes we will see many other examples of differ-
ences between R6RS-conforming implementations.

Acknowledgments

All the Adventures have my name at the top and I take full responsibility for the opinions and
the mistakes. But for the parts which are correct, I deserves little credit, since most of the
time I am just reporting advice which I have received from the Scheme community, mostly
from comp.lang.scheme and ikarus-users, as well from private emails. This is true for all of
my Adventures, but especially for the six episodes about the module system you are about to
read. I was very ignorant about the module system when I started this project, and this work

19.3. Compiling is not the same than executing 113

The Adventures of a Pythonista in Schemeland, Release 0.1

would not have been possible without the help of Abdulaziz Ghuloum, Derick Eddington, Will
Clinger, Eli Barzilay, Matthew Flatt, André van Tolder and many others. Thank you guys, you
rock!

114 Chapter 19. The R6RS module system

CHAPTER

TWENTY

THE COMPILATION AND EVALUATION
STRATEGY OF SCHEME PROGRAMS

One of the trickiest aspects of Scheme, coming from Python, is its distinction between inter-
preter semantics and compiler semantics.

The problem is that the same program can be executed both with interpreter semantics (typically
when typed at the REPL) and with compiler semantics (typically when run as a script), but the
way the program behaves is different. Moreover, there are programs which are valid at the
REPL but are rejected by the compiler.

To make things worse, the interpreter semantics is unspecified by the R6RS report, whereas
the compiler semantics is loosely specified, so that there are at least three different and
incompatible semantics about how programs are compiled and libraries are imported: the
Ikarus/Ypsilon/IronScheme/MoshScheme one, the Larceny one and the PLT one.

In other words, there is no hope of making programs with the interpreter semantics portable;
moreover, there also plenty of programs with compiler semantics which are not portable.

Fortunately the module system works well enough for most simple cases. The proof is that we
introduced the R6RS module system in episode 5, and for 15 episode we could go on safely by
just using the basic import/export syntax. However, once nontrivial macros enters in the game,
things are not easy anymore.

20.1 Interpreter semantics vs compiler semantics

First of all, let me clarify what I do mean by interpreter semantics and compiler semantics,
terms which have nothing to do with being an interpreted or compiled language, since both
Scheme interpreters and Scheme compilers exhibit both semantics.

Compiler semantics means that a program has (at least) two phases, the run-time phase and
the expand-time phase, and some parts of the programs are executed at expand-time and some
other parts of the program are executed at run-time. Scheme has a generic concept of macro
expansion time which is valid even for interpreted implementation when there is no compilation
time.

Interpreter semantics means that a program is fully evaluated at runtime, with no distinction
between phases (for pure interpreters) or with interleaved expansion and evaluation phases (for
incremental compilers).

115

http://www.artima.com/weblogs/viewpost.jsp?thread=239699

The Adventures of a Pythonista in Schemeland, Release 0.1

For instance Ikarus and Ypsilon work as incremental compilers at the REPL (I consider this
as interpreter semantics, by stretching the terminology) and as batch compilers for scripts (for
Ypsilon this is true only when the R6RS compatibility flag is set).

Python works as an incremental compiler at the REPL (each time you enter a function in the
REPL it is compiled to bytecode, and you can extract the bytecode by looking at .func_code
attribute) and as batch compiler for scripts.

Conceptually, in Python everything happens at runtime, including bytecode compilation. While
technically bytecode compilation is cached, conceptually you may very well think that every
module is recompiled at runtime, when you import it - which is actually what happens if the
module has changed in the meanwhile.

In short, you can consider Python as an interpreter (as it is usually done) and there is no sub-
stantial difference between typing commands at the REPL and writing a script. There are a few
minor differences actually, but they are not relevant for what I am discussing now.

Things are quite different in Scheme. The interpreter semantics is not specified by the R6RS
standard and it is completely implementation-dependent. It is also compatible with the standard
to not provide interpreter semantics at all. In particular, PLT Scheme provides a REPL which
is actually quite exceptional since it uses compiler semantics and not interpreter semantics.

The compiler semantics i.e. the expansion process of Scheme source code is (loosely) specified
by the R6RS standard and is used in libraries. The semantics used in scripts is not clear (in the
words of Will Clinger there is no such thing as an R6RS-conforming Scheme script, because
Scheme scripts are described only by a non-binding document that was never ratified).

The difference between the two semantics is most visible when you have macros depending
on helper functions. When a program is read in interpreter semantics, everything happens at
runtime: it is possible to define a function and immediately after a macro using that function.

When a program is read in batch compiler semantics instead, all the definitions and the expres-
sions are read, the macros are expanded and the program compiled, before execution.

Implementations have a considerable freedom in what they allowed to do; for instance Ypsilon

116 Chapter 20. The compilation and evaluation strategy of Scheme programs

http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-13.html#node_chap_10

The Adventures of a Pythonista in Schemeland, Release 0.1

scripts use batch compiler semantics when the --r6rs flag is set, but by default they use
incremental compiler semantics, just as the REPL. On the opposite side of the spectrum, the
PLT REPL (in non-R6RS mode) basically uses batch compiler semantics.

In any case the behavior of code typed the REPL is never identical to the behavior of a script:
for instance, at the REPL you can import modules at any moment, whereas in a script you must
import them at the beginning. There are other subtler differences, for instance in the behavior
of continuations. Then bottom line is that you should not believe your REPL blindly.

20.2 Macros and helper functions

As I said, you see the problem of compiler semantics once you start using macros which depend
from auxiliary functions. More in general there is the same problem for any identifier which
is used in the right hand side of a macro definition and not inside the templates. For instance,
consider this simple macro

(def-syntax (assert-distinct arg ...)
#’(#f)
(distinct? bound-identifier=? #’(arg ...))
(syntax-violation ’assert-distinct "Duplicated name" #’(arg ...)))

which raises a compile-time exception (syntax-violation) if it is invoked with duplicate argu-
ments. Such macro could be used as a helper in macros defining multiple names at the same
time, like the multi-define macro of episode 9. assert-distinct relies on the builtin
function bound-identifier=? which returns true when two identifiers are equal and false
otherwise (this is an extremely simplified explanation, let me refer to the R6RS document for
the gory details) and on the helper function distinct? defined as follows:

;; check if the elements of a list are distinct according to eq?
(define (distinct? eq? items)

(if (null? items) #t ; no items
(let+ ((first . rest) items)
(cond
((null? rest) #t); single item
((exists (cut eq? first <>) rest) #f); duplicate
(else (distinct? eq? rest)); look at the sublist
))))

distinct? takes a list of objects and finds out they are all distinct according to some equality
operator, of if there are duplicates. Here are a couple of test cases:

(test "distinct"
(distinct? eq? ’(a b c))
#t)

(test "not-distinct"
(distinct? eq? ’(a b a))
#f)

20.2. Macros and helper functions 117

http://www.artima.com/weblogs/viewpost.jsp?thread=240804
http://www.r6rs.org/final/html/r6rs-lib/r6rs-lib-Z-H-13.html#node_idx_1142

The Adventures of a Pythonista in Schemeland, Release 0.1

It is natural, when writing new code, to try things at the REPL and to define first the function
and then the macro. The problem is that the code will work in REPL: however, in R6RS-
conforming implementations, if you cut and paste from the REPL and convert it into a script,
you will run into an error!

The explanation is that in compiler semantics macro definitions and function definitions hap-
pens at different times. In particular, macro definitions are taken in consideration before func-
tion definitions, independently from their relative position in the source code. Therefore our
example fails to compile since the assert-distinct macro makes use of the distinct?
function which is not yet defined at the time the macro is considered, i.e. at expansion time.
Actually, not only functions are not evaluated at expansion time and cannot be used inside a
macro, but in general the right hand side of any definition is left unevaluated by the compiler.
This explains why (define x (/ 1 0)) is compiled correctly, as we discussed in the
previous article .

There are nonportable ways to avoiding writing the helper functions in a separate module. For
instance Ypsilon scripts by default (unless the strict R6RS-compatibility flag is set) use inter-
preter semantics and have no phase separation. On the other end of the spectrum, mzscheme
has very strong phase separation, but it is still possible to define helper functions at expand-time
without putting them in a separated module, using the nonportable define-for-syntax
form.

Nevertheless, the only portable way to make available at expand time a function defined at
runtime is to define the function in a different module and to import it at expand time.

20.3 A note about incremental compilers and inter-
preters

Ikarus and Ypsilon use the semantics of an incremental compiler: each top level block of code
is compiled - to native code in Ikarus and to bytecode in Ypsilon - and executed immediately.
Each new definition augments the namespace of known names at runtime, both for first class
objects and macros. Macros are both defined and expanded at runtime.

It is clear tha the semantics of an incremental compiler is very similar to the semantics of an
interpreter; here is an example in Ikarus, where a macro is defined which depends from a helper
function:

> (define (double x) (* 2 x))
> (def-syntax (m) (double 1))
(m)
2

However, an incremental compiler is not identical to an interpreter, since internally it uses phase
separation to compile blocks of code; for instance in Ikarus if you put together the previous
definition in a single block you get an error, since the function double is known at run-time
but not at expand-time:

> (let () (define (double x) (* 2 x)) (def-syntax (m) (double 1)) (m))
Unhandled exception

118 Chapter 20. The compilation and evaluation strategy of Scheme programs

http://www.artima.com/weblogs/viewpost.jsp?thread=251476
http://www.artima.com/weblogs/viewpost.jsp?thread=251476

The Adventures of a Pythonista in Schemeland, Release 0.1

Condition components:
1. &who: double
2. &message: "identifier out of context"
3. &syntax:

form: double
subform: #f

4. &trace: #<syntax double>

There are still Scheme implementations which are pure interpreters and do not distinguish
expand time from runtime at all; here is an example in Guile (notice that Guile is not an R6RS
implementation):

guile> (let () (define (double x) (* 2 x)) (define-macro (m) (double 1)) (m))
2

I am using define-macro here which is the built-in macro mechanism for Guile: as you see
the function double is immediately available to the macro, even if it is defined inside the same
block as the macro, which is not the case for any of the existing R6RS implementations. Notice
however that Guile also supports high level macros (via an external library) using compiler
semantics.

20.4 Discussion

The interpreter semantics is the most intuitive and easier to understand. In such semantics
everything happens at runtime; the code may still be compiled before being executed, as in
incremental compiler, but this is an implementation detail: from the point of view of the pro-
grammer the feeling is the same as using an interpreter - modulo the tricky point mentioned in
the previous paragraph.

The interpreter semantics is also the most powerful semantics of all: for instance, it is possible
to redefine identifiers and to import modules at runtime, things which are both impossible in
compiler semantics.

If you look at it with honesty, the compiler semantics is basically a performance hack: by separ-
ing compilation time from runtime you can perform some computation only once (at compila-
tion time) and gain performance. This is not strange at all: compilers are performance hacks. It
is just more efficient to convert a a program into machine code with a compiler than to interpret
it expression by expression.

The other main reason to favor compilers over interpreters, apart from performance, is compile-
time cheching. Compilers are able to reject a class of incorrect programs even before executing
them. Scheme compilers are traditionally not too strong in this respect, because of dynamic
typing and because of the design philosophy of the language (be permissive, we will solve the
errors later). Nevertheless, with macros you can in principle add all the compile-time checkings
you want (we just saw the checking for distinct names): it is even possible to turn Scheme into
a typed language, like Typed Scheme.

Another (minor) advantage of the compiler semantics is that it makes it easier for static tools
to work with a program. For instance in Python an IDE cannot implement autocompletion

20.4. Discussion 119

http://www.ccs.neu.edu/home/samth/typed-scheme/

The Adventures of a Pythonista in Schemeland, Release 0.1

of names in a reliable way, without having knowledge of the running program. In Scheme
an IDE can statically determine all the names imported by the program and thus offer full
autocompletion.

120 Chapter 20. The compilation and evaluation strategy of Scheme programs

CHAPTER

TWENTYONE

THE DIFFERENT MEANINGS OF
PHASE SEPARATION

We saw in the latest episode that Scheme programs exhibit phase separation, i.e. some parts
of the program are executed at expand time (import declarations, macro definitions and macro
expansions) and some other parts are executed at runtime (regular definitions and expressions).

However, things are more complicated than that. There are actually three different concepts of
phase separation for R6RS-conforming implementations. I will call the three concepts weak,
strong and extra-strong phase separation respectively. The difference is in how modules are
imported - instantiated is the more correct term - and in how variables enter in the namespace.

Ikarus, Ypsilon, IronScheme and MoshScheme have a weak form of phase separation (also
called implicit phasing): there is a distinction between expand-time and runtime, but it is not
possible to import variables in the runtime phase only or in the expand time phase only: vari-
ables are imported simultaneously for all phases.

Larceny has a stronger form of phase separation (explicit phasing): it can import variables
in a specific phase on not in another, depending on the import syntax used. However, if you
instantiate a module in more than one phase - for instance both at run-time and at expand-time
- only one instance of the module is created and variables are shared.

PLT Scheme has an extra-strong form of phase separation in which phases are completely sep-
arated: if you instantiate a module both at run-time and at expand-time, there are two different
and independent instances of the module.

In this episode I will show the simplest consequences of phase separation. In the next episodes I
will show less obvious consequences, such as the tower of metalevels associated to strong phase
separation and the multiple instantiation semantics associated to extra-strong phase separation.

21.1 Compile-time, run-time and optimization-time

Before discussing strong phase separation, I want to point out that phase separation, even in its
weakest form, has consequences that may be surprising at first. For instance, Scheme compilers
(but also the Python compiler) cannot recognize obvious errors like a zero division error in the
right hand side of a top level definition, as I have shown in episode 19.

I asked for clarifications on the Ikarus mailing list. It turns out that Scheme compilers are not
stupid: they can recognize the zero division error, but they cannot signal it since it is forbidden

121

http://www.artima.com/weblogs/viewpost.jsp?thread=251476

The Adventures of a Pythonista in Schemeland, Release 0.1

by the Scheme specification. For instance, Llewellyn Pritchard (Leppie), the implementor of
IronScheme wrote:

In IronScheme, if I can detect there is an issue at compile time, I simply defer the
computation to the runtime, or could even just convert it into a closure that will
return an error. This is only one of the things that make Scheme quite hard to
implement on a statically typed runtime such as the CLR, as it forces me to box
values at method boundries and plenty type checking at runtime.

whereas Abdul Aziz Ghuloum wrote:

Actually, Ikarus does some type checking, and it does detect the division by 0. It
however cannot do anything about it in this case since Scheme requires that the
exception be raised when the division operation is performed at run time.

Aziz went further and explained that Ikarus is able to evaluate expressions like

(define x 5)
(define y (+ x 1))
(define z (* x y))

both in top level definitions in and internal definitions; however, it does so in the optimization
phase, after the expansion phase, i.e. too late to make the definitions available to macros. It
could however at least report a syntax warning (take it as a feature request, Aziz! ;-)

Aziz also brought up an argument in favor of the current specification. First of all, it is pretty
clear that we want expressions like

(define thunk (lambda () (/ 1 0)))

to be compilable, because it is useful to have functions that can raise predictable errors, espe-
cially when writing test cases.

Now, a module is not really different from a giant thunk; importing a module calls the thunk
(this is essentially what module instantiation is) and possibly raises errors at runtime, but the
module per se must be compilable even if contains errors which are detectable at compile time.

The two-phases compilation strategy has the advantage of keeping the compiler conceptually
simple, working as a traditional preprocessor integrated in the language: we know that the
compiler will manage the macros, but will not perform any evaluation.

Actually, there are strong arguments against having the compiler evaluating generic top level
or internal definitions; consider for instance the case when you are reading some data from
standard input ((define date (read)): if the definition were evaluated at compile-time,
the compiler would stop during compilation to read the data.

Then, some time later, at execution time, the program would stop again to read potentially
different data, so that macros would use the compilation time data and the rest of the program
the runtime data!

That would be madness. Clearly it makes no sense to evaluate at compile-time definitions
depending on run-time values, except possibly at the REPL, where everything happens at run-
time and the phases are intermingled.

122 Chapter 21. The different meanings of phase separation

The Adventures of a Pythonista in Schemeland, Release 0.1

Finally, the two-phases enable cross compilation: macros will be expanded independently from
the architecture, whereas the runtime structures will be compiled and linked differently depend-
ing on the architecture of the target processor.

21.2 Strong vs weak phase separation

To explain the practical difference between strong and weak phase separation let me go back to
the example of the assert-distinct macro of episode 20. I have put the helper function
(distinct?) in the (aps list-utils)module, so that you can import it. This is enough
for Ikarus, but it is not enough for PLT Scheme or Larceny. In other words, in Ikarus (but also
IronScheme, MoshScheme and all the systems using the psyntax module system) the following
script

(import (rnrs) (sweet-macros) (only (aps list-utils) distinct?))

(def-syntax (assert-distinct arg ...)
#’(#f)
(distinct? bound-identifier=? #’(arg ...))
(syntax-violation ’assert-distinct "Duplicate name" #’(arg ...)))

is correct, since the import form instantiates the module (aps list-utils) both at run-
time and expand-time, but in PLT Scheme and Larceny it raises an error:

$ plt-r6rs assert-distinct.ss
assert-distinct.ss:5:3: compile: unbound variable in module
(transformer environment) in: distinct?

The problem is that PLT Scheme and Larceny have strong phase separation and require phase
specification: by default names defined in external modules are imported only at runtime, not
at compile time. In a sense this is absurd since names defined in an external pre-compiled mod-
ules are of course known at compile time (this is why Ikarus has no trouble importing them);

21.2. Strong vs weak phase separation 123

http://en.wikipedia.org/wiki/Cross_compilation
http://www.artima.com/weblogs/viewpost.jsp?thread=255303
http://ikarus-scheme.org/r6rs-libraries/index.html

The Adventures of a Pythonista in Schemeland, Release 0.1

nevertheless PLT Scheme (and Larceny) forces you to specify at which phase the functions
must be imported.

In particular, if you want to import distinct? at expand time you must use the (for
expand) form:

(import (for (only (aps list-utils) distinct?) expand))

With this import form, the script is portable in all R6RS implementations, but its meaning is
different: in the psyntax based implementations the name distinct? is imported both at
runtime and at expand-time, whereas in PLT and Larceny it is imported only at expand time.

Notice that there are portability issues associated with phase separation. Not using the phase
specification syntax results in non-portable code, therefore if you care about portability you
must use phase specification even if your implementation does not use it :-(

For instance in systems based on psyntax and in Ypsilon - which is not based on psyntax - this
program

(import (rnrs) (for (only (aps list-utils) distinct?) expand))
(display distinct?)

will run, but in PLT Scheme and Larceny it will not even compile.

In a sense, implementation with strong phase separation are more powerful than implemen-
tations with weak phase separation, since with implicit phasing it is impossible to import the
name distinct? at expand time and not at runtime - notice however that more powerful does
not mean necessarily better and the implementations with weak phase separation are easier to
use.

The situation for people coming from implementations with strong phase separation is no nice
either. For instance the program

(import (rnrs) (for (only (aps list-utils) distinct?) run))
(display distinct?)

will run on all implementations, but you cannot rely on the fact that the named distinct?
will be imported only at run-time and not at expand-time.

The point however is moot since the R6RS forbids the same name to be used with different
bindings in different phases (see section 7.1, page 23). In particular, if you import the name
distinct? at run-time the compiler will reserve the name for all phases: it cannot be reused
at expand time, unless it has the same binding.

In other words, the namespaces in the different phases are separated but not completely inde-
pendend, which in my opinion undermines the concept of strong phase separation. I believe
PLT Scheme in non-R6RS mode has fully independent namespaces for different phases, but
this again is not portable.

124 Chapter 21. The different meanings of phase separation

http://ikarus-scheme.org/r6rs-libraries/index.html
http://ikarus-scheme.org/r6rs-libraries/index.html

The Adventures of a Pythonista in Schemeland, Release 0.1

21.3 A note about politics

The reason for such limitations and inconsistencies can be inferred from this extract from R6RS
editors mailing list (from the answer to formal comment 92):

A precise specification of the library system remains elusive, partly because dif-
ferent implementors still have different ideas about how the library system should
work....

The different opinions are supported by two different reference implementations of
R6RS libraries: one by Van Tonder and one by Ghuloum and Dybvig. In addition,
PLT Scheme implements a library system...

Despite the differences in the reference implementations, it appears that many pro-
grams will run the same in both variants of the library system. The overlap appears
to be large enough to support practical portability between the variants.

Under the assumption that the overlap is useful, and given the lack of consensus
and relative lack of experience with the two prominent variants of draft R6RS li-
braries, the R6RS specification of libraries should be designed to admit both of the
reference implementations. As a design process, this implementation-driven ap-
proach leaves something to be desired, but it seems to be the surest way forward.

Basically, the R6RS standard is the result of a compromise between the partisans of explicit
phasing - people wanting to control in which phases names are imported - and the partisan of
implicit phasing - people wanting to import names at all phases, always.

A compromise was reached to make unhappy both parties.

The same kind of compromise was reached on the subject of multiple instantiation: all behav-
iors are accepted by the R6RS standard, so you cannot rely on the number the times a library
is instantiated.

For instance, consider a simple do nothing library like the following:

#!r6rs
(library (x)
(export)
(import (rnrs))
(display "instantiated x!\n")
)

If you now run the following script

$ cat script.ss
(import (for (x) expand run))

the message instantiated x! will be printed only once by Larceny, but twice by PLT
Scheme. For comparison, Ypsilon prints the message only once (it has single instantiation
semantics) and Ikarus does not print any message at all (!), since the module is not used (it
would print the message only once if the module were used).

21.3. A note about politics 125

http://www.r6rs.org/formal-comments/comment-92.txt

The Adventures of a Pythonista in Schemeland, Release 0.1

In other words, authors of portable libraries cannot rely on multiple instantiation, nor on single
instantiation.

The final outcome for the R6RS module system is certainly unhappy, but I guess it was the best
that the R6RS editors could obtain, given the pre-existing situation. Another point in favor of
languages designed by (benevolent) dictators!

126 Chapter 21. The different meanings of phase separation

CHAPTER

TWENTYTWO

THE DARK TOWER OF META-LEVELS

I said in the previous episode that even if your implementation of choice does not use explicit
phasing, you must understand it in order to write portable programs. Truly understandanding
explicit phasing is nontrivial, since you must reason in terms of a (Dark) Tower of import levels,
or meta-levels.

Since the publication of the Aristotle’s Metaphysics, the word meta has been associated to
arcane and difficult matters. The concept of meta-level is no exception to the rule. You can find
a full description of the tower of meta-levels in the R6RS document, in a rather dense paragraph
in section 7 that will make your head hurt.

There is also a celebrated paper by Matthew Flatt, Composable and Compilable Macros (a.k.a.
You want it when) which predates the R6RS by many years and is more approachable. Its
intent is to motivate the module system used by PLT Scheme, which made popular the concept
of tower of meta-levels.

Meta-levels are just another name for phases. We have already encountered two meta-levels:
the run-time phase (meta-level 0) and expand time phase (meta-level 1). However, the full
tower of meta-levels is arbitrarily high and extends in two directions, both for positive and for
negative integers (!)

Scheme implementations with explicit phasing allow you to import a module at a generic meta-
level N with the syntax (import (for (lib) (meta N))), where N is an integer. The
forms (import (for (lib) run)) and (import (for (lib) expand)) are
just shortcuts for (import (for (lib) (meta 0))) and (import (for (lib)
(meta 1))), respectively.

Instead of discussing much theory, in this episode I will show two concrete examples of macros
which require importing variables at a nontrivial meta-level N, with N<0 or N>1.

For convenience I am keeping all the code of this episode into a
package called experimental, which you can download from here:
http://www.phyast.pitt.edu/~micheles/scheme/experimental.zip

22.1 An easy-looking macro with a deep portability is-
sue

My first example is a compile time name -> value mapping, with some introspection:

127

http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-10.html#node_sec_7.2
http://www.cs.utah.edu/plt/publications/macromod.pdf
http://www.phyast.pitt.edu/~{}micheles/scheme/experimental.zip

The Adventures of a Pythonista in Schemeland, Release 0.1

Figure 22.1: Aziz faces the Dark Tower of Meta-levels

128 Chapter 22. The Dark Tower of Meta-levels

The Adventures of a Pythonista in Schemeland, Release 0.1

#!r6rs
(library (experimental static-map)
(export static-map)
(import (rnrs) (sweet-macros))

(def-syntax (static-map (name value) ...)
#’(syntax-match (<names> name ...)

(sub (ctx <names>) #’’(name ...))
(sub (ctx name) #’value)
...))

)

This is a kind of second order macro, since it expands to a macro transformer; its usage is
obvious in implementations with implicit phasing:

$ cat use-static-map.ss

(import (rnrs) (sweet-macros) (for (experimental static-map) expand))
;; the for syntax is ignored in implementations with implicit phasing

(def-syntax color (static-map (red #\R) (green #\G) (yellow #\Y)))

(display "Available colors: ")
(display (color <names>))
(display (list (color red) (color green) (color yellow)))
(newline)

color is a macro which replaces a symbolic name in the set red, green, yellow with its
character representation (#\R, #\G, #\Y) at expand-time (notice that in Scheme characters are
different from strings, i.e. the character \#R is different from the string of length 1 "R").

If you run this script in Ikarus or Ypsilon or Mosh you will get the following unsurprising
result:

$ ikarus --r6rs-script use-static-map.ikarus.ss
Available colors: (red green yellow)(R G Y)

However, in PLT and Larceny, the above will fail. The PLT error message is particularly
cryptic:

$ plt-r6rs use-static-map.ss
/home/micheles/.plt-scheme/4.0/collects/experimental/static-map.sls:8:25:
compile: bad syntax; reference to top-level identifier is not allowed,
because no #%top syntax transformer is bound in: quote

I was baffled by this error, so I asked for help in the PLT mailing list, and I discovered that there
is nothing wrong with the client script and that there is no way to fix the problem by editing it:
the problem is in the library code!

22.1. An easy-looking macro with a deep portability issue 129

The Adventures of a Pythonista in Schemeland, Release 0.1

The problem is hidden, since you can compile the library without issues and you see it only
when you use it. Also, the fix is pure dark magic: you need to rewrite the import code in
(experimental static-map) by replacing

(import (rnrs))

with

(import (rnrs) (for (rnrs) (meta -1))

i.e. the static-map macro must import the (rnrs) environment at meta-level -1! Why it
is so? and how should I interpret meta-level -1?

22.2 Negative meta-levels

Matthew Flatt explained to me how meta-levels work. The concept of meta-level is only rel-
evant in macro programming. When you define a macro, the right hand side of the definition
can only refer to names which are one meta-level up, i.e. typically at meta-level 1 (expand
time). On the other hand, inside a template one goes back one meta-level, and therefore usually
a template expands at meta-level 0 (run-time).

However, in the case of the static-map macro, the template is itself a syntax-match
form, and since the templates of this inner syntax-match expand one level down, we reach
meta-level -1. This is why the macro needs to import the (rnrs) bindings at meta-level -1
and why the error message says that quote is unknown. The comments below should make
clear how meta-levels mix:

(def-syntax static-map ;; meta-level 0
(begin

<there could be code here ...> ;; meta-level 1
(syntax-match ()
(sub (static-map (name value) ...)

#’(begin
<there could be code here ...> ;; meta-level 0
(syntax-match (<names> name ...)

(sub (ctx <names>)
#’’(name ...)) ;; meta-level -1

(sub (ctx name)
#’value) ;; meta-level -1

...))))

Actually quote is the only needed binding, so it would be enough to import it with the syn-
tax (import (for (only (rnrs) quote) (meta -1))). If we ignored the intro-
spection feature, i.e. we commented out the line

(sub (ctx <names>) #”(name ...))

there would be no need to import quote at meta-level -1, and the macro would work without
us even suspecting the existence of negative meta-levels.

130 Chapter 22. The Dark Tower of Meta-levels

The Adventures of a Pythonista in Schemeland, Release 0.1

Things are even trickier: if we keep the line (sub (ctx <names>) #”(name ...)) in
the original macro, but we do not use it in client code, the original macro will apparently work,
and will break at the first attempt of using the introspection feature, with an error message
pointing to the problem in client code, but not in library code :-(

22.3 Meta-levels greater than one

It is clear that the meta-level tower is theoretically unbound in the negative direction, since you
can nest macro transformers at any level of depth, and each level decreases the meta-level by
one unity; on the other hand, the tower is theoretically unbound even in the positive direction,
since a macro can have in its right hand side a macro definition which right hand side will
requires bindings defined at an higher level, and so on. In general nested macro definitions
increase the meta-level; nested macro templates decrease the meta-level.

Here is an example of a macro which requires importing names at meta-level 2:

$ cat meta2.ss

#!r6rs
(import (rnrs)

(for (sweet-macros) (meta 0) (meta 1))
(for (only (rnrs) begin lambda display) (meta 2)))

(def-syntax m
(let ()
(def-syntax m2
(begin ;; begin, display and

(display "at metalevel 2\n") ;; lambda are used here
(lambda (x) "expanded-m\n"))) ;; at meta-level 2

(define _ (display "at metalevel 1\n")) ;; meta-level 1
(lambda (x) (m2)))) ;; here

(display (m))

Notice that right hand side of a def-syntax form does not need to be syntax-match
form; the only requirement for it is to be a transformer, i.e. a one-argument procedure. In this
example the inner macro m2 has a transformer returning the string "m-expanded" whereas
the outer macro m has a transformer returning the expansion of (m2) i.e. again the string
"m-expanded". Running the script will print the following:

$ ikarus --r6rs-script meta2.ss
at meta-level 2
at meta-level 1
expanded-m

You will get the same in Larceny and in sufficiently recent versions of PLT Scheme (> 4.1.3).
Currently Ypsilon raises an exception but this is just a bug (already fixed in the trunk).

22.3. Meta-levels greater than one 131

http://code.google.com/p/ypsilon/issues/detail?id=98

The Adventures of a Pythonista in Schemeland, Release 0.1

22.4 Discussion

The concept of meta-level is tricky. On one hand, there only two physical meta-levels, i.e.
the run-time (when the code is executed) and the compile time (when the code is compiled).
On the other hand, conceptually there is an arbitrary number of positive meta-levels (“before
compile time”) and negative meta-levels (“after run-time”) which have to be taken in account
to compile/execute a program correctly: everytime the compiler look at a nested macro, it has
to consider the innermost level first, and the outermost level last.

The power (and the complication) of phase specification is that the language used at a given
phase can be different from the language used in the other phases. Suppose for instance you
are a teacher, and you want to force your students to write their macros using only a functional
subset of Scheme. You can do so by importing at compile time all R6RS procedures except
the nonfunctional ones (like set!) while importing at run-time the whole of R6RS. You could
even perform the opposite, and remove set! from the run-time, but allowing it at compile
time.

However, personally I do not feel a need to distinguish the languages at different phases and I
like Scheme to be a Lisp-1 language with a single namespace for all variables. I am also not
happy with having to keep manually track of the meta-levels, which is difficult and error prone
when writing higher order macros. Moreover, in PLT and Larceny writing a macro which
expands to a nested macro with N levels is difficult, since one has to write by hand all the
required meta imports.

All this trouble is missing in Ypsilon and in the implementations based on psyntax. In such
systems importing a module imports its public variables for all meta-levels. In other words
all meta-levels share the same language: the tower of meta-levels is effectively destroyed (one
could argue that the tower is still there, implicitly, but the point is that the programmer does not
need to think about it explicitly). The model of implicit phasing was proposed by Kent Dybvig
and Abdul Aziz Ghuloum, who wrote his Ph. D. thesis on the subject.

132 Chapter 22. The Dark Tower of Meta-levels

http://en.wikipedia.org/wiki/Lisp-1#The_function_namespace
http://portal.acm.org/citation.cfm?id=1291151.1291197\&coll=GUIDE\&dl=GUIDE\&CFID=34012650\&CFTOKEN=38507862

The Adventures of a Pythonista in Schemeland, Release 0.1

Figure 22.2: Aziz destroys the Tower of Meta-levels

22.4. Discussion 133

The Adventures of a Pythonista in Schemeland, Release 0.1

134 Chapter 22. The Dark Tower of Meta-levels

CHAPTER

TWENTYTHREE

SEPARATE COMPILATION AND
IMPORT SEMANTICS

Scheme is all about times: there is a run-time, an expand-time, and a discrete set of times
associated to the meta-levels. When separate compilation is taken in consideration, there is
also another set of times: the times when the libraries are separately compiled. Finally, if the
separately compiled libraries define macros which are used in client code, there is yet another
set of times, the visit times.

To explain what the visit time is, suppose you have a low level library L, compiled yesterday,
defining a macro you want to use in another middle level library M, to be compiled today. The
compiler needs to know about the macro defined in L at the time of the compilation of M,
because it has to expand code in M. Therefore, the compiler must look at L and re-evaluate the
macro definition today (the process is called visiting). The visit time is different from the time
of the compilation of L as it happens just before the compilation of M.

Here is a concrete example. Consider the following low level library L, defining a macro m and
an integer variable a:

135

The Adventures of a Pythonista in Schemeland, Release 0.1

#!r6rs
(library (experimental L)
(export m a)
(import (rnrs) (sweet-macros))
(def-syntax m

(begin
(display "visiting L\n")
(lambda (x) #f)))

(define a 42)
(display "L instantiated\n")
)

You may compile it with PLT Scheme:

$ plt-r6rs --compile L.sls
[Compiling /usr/home/micheles/gcode/scheme/experimental/L.sls]
visiting L

Since the right hand side of a macro definition is evaluated at compile time the message
visiting L is printed during compilation, as expected. Consider now the following middle
level library M using the macro m:

#!r6rs
(library (experimental M)
(export a)
(import (rnrs) (experimental L))
(m); this line is expanded at compile-time
(display "M instantiated\n"); at run-time
)

In this example the compiler needs to visit L in order to compile M. This is actually what
happens:

$ plt-r6rs --compile M.sls
[Compiling /usr/home/micheles/gcode/scheme/experimental/M.sls]
visiting L

If you comment out the line with the macro call, the compiler does not need to visit L anymore;
some implementations may take advantage of this fact (Ypsilon and Ikarus do). However, PLT
Scheme will continue to visit L in any case.

23.1 The mysterious import semantics

It is time to ask ourselves the crucial question: what does it mean to import a library?

For a Pythonista, things are very simple: importing a library means executing it at run-time.
For a Schemer, things are somewhat complicated: importing a library implies that some basic
operations are performed at compile time - such as looking at the exported identifiers and at the

136 Chapter 23. Separate compilation and import semantics

The Adventures of a Pythonista in Schemeland, Release 0.1

dependencies of the library - but there is also a lot of unspecified behavior which may happen
both a compile-time and at run-time. In particular at compile-time a library may be only visited,
i.e. its macro definitions can be re-evaluated - or can be only instantiated, or both. Different
things happens in different situations and in the same situation different implementations can
perform different operations.

The example of the previous paragraph is useful in order to get a feeling of what is portable
behavior and what is not. Let me first consider what happens in Ikarus. If I want to compile
L and M in Ikarus, I need to introduce a helper script H.ss, since Ikarus has no direct way to
compile a library from the command line. Here is the script:

$ cat H.ss

#!r6rs
(import (rnrs) (experimental M))
(display a)

Here is what I get:

$ ikarus --compile-dependencies H.ss
visiting L
Serializing "/home/micheles/gcode/scheme/experimental/M.sls.ikarus-fasl" ...
Serializing "/home/micheles/gcode/scheme/experimental/L.sls.ikarus-fasl" ...

Ikarus is lazier than PLT: for instance, if you comment the line invoking the macro in M.sls
and you recompile the dependencies, then the library M is not visited.

Both PLT and Ikarus do not instantiate L in order to compile M (it is not needed) but Ypsilon
does. You may check that if you introduce a dummy macro in M, depending on the variable a
defined in L (for instance if you add a line (def-syntax dummy (lambda (x) a)))
then the library L must be instantiated in order to compile M, and all implementations do so.

Let us consider the peculiarities of Ypsilon, now. Ypsilon does not have a switch to compile a
library without executing it - even if this is possible by invoking the low level compiler API -
so we must execute H.ss to compile its dependencies:

$ ypsilon --r6rs H.ss
L instantiated
visiting L
M instantiated
42

There are several things to notice here, since the output of Ypsilon is quite different from the
output of Ikarus

$ ikarus --r6rs-script H.ss
L instantiated
42

and the output of PLT:

23.1. The mysterious import semantics 137

The Adventures of a Pythonista in Schemeland, Release 0.1

$ plt-r6rs H.ss
visiting L
visiting L
L instantiated
M instantiated
42

The first thing to notice is that both in Ikarus and in PLT we relied on the fact that the libraries
were precompiled, so in order to perform a fair comparison we must run Ypsilon again (this
second time the libraries L and M will be precompiled):

$ ypsilon --r6rs H.ss
L instantiated
M instantiated
42

You my notice that this time the library L is not visited: it was visited the first time, in order
to compile M, but there is no need to do so now. During compilation of M macros has been
expanded and the byte-code of M contains the expanded version of the library; moreover the
helper script H does not use any macro so it does not really need to visit L or M to be compiled.
The same happens for Ikarus. PLT instead visits L twice to compile H.ss. In PLT all depen-
dencies (both direct and indirect) are always visited when compiling. Only if we compile the
script once and for all

$ plt-r6rs --compile H.ss
[Compiling /usr/home/micheles/gcode/scheme/experimental/H.ss]
[Compiling /home/micheles/.plt-scheme/4.1.5.5/collects/experimental/M.sls]
visiting L
visiting L

the visiting L message will not be printed:

$ plt-r6rs H.ss
L instantiated
M instantiated
42

23.2 More implementation-dependent details

Having performed the right number of compilations now the output of PLT and Ypsilon are the
same; nevertheless, the output of Ikarus is different, since Ikarus does not instantiate the middle
level library M. The reason is the implicit phasing semantics of Ikarus (other implementations
based on psyntax would exhibit the same behavior): the helper script H.ss is printing the
variable a which really comes from the library L. Ikarus is clever enough to recognize this fact
and lazy enough to avoid instantiating M without need.

138 Chapter 23. Separate compilation and import semantics

The Adventures of a Pythonista in Schemeland, Release 0.1

On the other hand, Ypsilon performs eager instantiation and it instantiates (once) all the li-
braries it imports (both directly and indirectly), even at compile time and even in situations
when the instantiation would not be needed for compilation of the client library. As you see,
Scheme implementations have a lot of latitude in such matters.

The implementations based on psyntax are the smartest out there, but begin smart is not always
the same thing as being good. It is good to avoid instantiating a library if the instantiation is re-
ally unneeded; it is bad if the library has some side effect, since the side effect will mysteriously
disappear. In our example the side effect is just printing the message M instantiated, in
more sophisticated examples the side effect could be writing a log on a database, or initializing
some variable, or registering an object, or something else.

For instance, suppose you want to collect a bunch of functions into a global registry acting as a
dictionary of functions. You may do so as follows:

(library (my-library)
(export)
(import (registry))

(registry-set! ’f1 (lambda (x) ’something1))
(registry-set! ’f2 (lambda (x) ’something2))
...
)

The library here does not export anything, since it relies on side effects to populate the
global registry of functions; the idea is to access the functions later, with a call of kind
(registry-ref <func-name>). This design as it is is not always portable to systems
based on psyntax, because such systems will not instantiate the library (the library does not
export any variable, nothing of the library can be used in client code!). This can easily be fixed,
by introducing an initialization function to be exported and called explicitly from client code,
which is a good idea in any case.

Analogously, a library based on side effects at visit time, i.e. in the right hand side of macro
definitions, is not portable, since systems based on psyntax will not visit a library with macros
which are not used. This is relevant if you want to use the technique described in the You want
it when? paper: in order to make sure that the technique work on systems based on psyntax,
you must make sure that the library exports at least one macro which is used in client code.
Curious readers will find the gory details in this thread on the PLT mailing list.

Generally speaking, you cannot rely on the number of times a library will be instantiated, even
within the same implementation! Abdulaziz Ghuloum gave a nice example in the Ikarus and
PLT lists. You have the following libraries:

(library (T0) (export) (import (rnrs)) (display "T0\n"))
(library (T1) (export) (import (for (T0) run expand)))
(library (T2) (export) (import (for (T1) run expand)))
(library (T3) (export) (import (for (T2) run expand)))

and the following script:

23.2. More implementation-dependent details 139

http://www.cs.utah.edu/plt/publications/macromod.pdf
http://www.cs.utah.edu/plt/publications/macromod.pdf
http://groups.google.com/group/plt-scheme/browse_frm/thread/c124fa9c48dc5b6a?hl=en

The Adventures of a Pythonista in Schemeland, Release 0.1

#!r6rs
(import (T3))

Running the script (without precompilation) results in printing T0:

0 times for Ikarus and Mosh
1 time for Larceny and Ypsilon
10 times for plt-r6rs
13 times for mzscheme
22 times for DrScheme

T0 is not printed in psyntax-based implementations, since it does not export any identifier that
can be used. T0 is printed once in Larceny and Ypsilon since they are single instantiation
implementations with eager import. The situation in PLT Scheme is subtle, and you can find a
detailed explanation of what it is happening in this other thread. Otherwise, you will have to
wait for the next (and last!) episode of this series, where I will explain the reason why PLT is
instantiating (and visiting) modules so many times.

140 Chapter 23. Separate compilation and import semantics

http://groups.google.com/group/ikarus-users/msg/7df9b8800141610c?hl=en

CHAPTER

TWENTYFOUR

MUTATING VARIABLES ACROSS
MODULES

There are situations where it is handy to mutate a global variable or a data structure across
modules, for instance to keep a counter or a registry of objects. However, direct mutation
of exported variables is forbidden by the R6RS standard. Consider for instance a module
exporting a variable x and a function incr-x with side effects affecting that variable:

#!r6rs
(library (experimental mod1)

(export x incr-x)
(import (rnrs))

(define x 0)
(define (incr-x)
(set! x (+ 1 x))
x)

)

This kind of side effect is ruled out by the R6RS specification (section 7.2): exported
variables must be immutable. This is the reason why Ikarus, Ypsilon and Larceny reject
the code with errors like attempt to export mutated variable or attempt to
modify immutable variable. The current SVN version PLT Scheme also raises an
error, but the official version (4.1.5 at the time of this writing) is buggy (I submitted the bug
report).

24.1 Mutating internal variables

Consider now a module exporting a function with side effects affecting a non-exported variable:

#!r6rs
(library (experimental mod2)

(export get-x incr-x)
(import (rnrs))

(define x 0)

141

The Adventures of a Pythonista in Schemeland, Release 0.1

(define (get-x)
x)

(define (incr-x)
(set! x (+ 1 x))
x)

(display "Instantiated mod2\n")
)

This is a valid library which compiles correctly. The accessor function get-x gives access to
the internal variable x. We may import it at the REPL and we may experiment with it:

$ ikarus
> (import (experimental mod2)); this does not instantiate mod2 immediately
> (get-x); now mod2 must be instantiated
Instantiated mod2
0
> (incr-x)
1
> (incr-x)
2
> (get-x)
2

Everything works as one would expect. However, things are trickier when phase separation
enters in the game.

24.2 Mutating variables across phases

A Scheme implementation exhibits a cross-phase side effect if mutating a variable at expand
time affects the value of the same variable at run-time. All R6RS implementations - except PLT
Scheme which uses different instances for different phases - may have cross-phase side effects.
On the other hand, in all R6RS implementations cross-phase side effects can be avoided by
using separated compilation.

In order to give a concrete example, consider the following script:

$ cat use-mod2.ss

(import (rnrs) (sweet-macros) (for (experimental mod2) expand run))

(def-syntax m
(lambda (x)

(display "At expand-time x=")
(display (incr-x))
(newline)

142 Chapter 24. Mutating variables across modules

The Adventures of a Pythonista in Schemeland, Release 0.1

"m-expanded"))

(m)

(begin
(display "At run-time x=")
(display (incr-x))
(newline))

Here we formally import the module mod2 twice, both at run-time and at expand time. In
PLT Scheme (which is the only implementation with explicit phasing and multiple instantia-
tion) there are two fully separated instances of the module, and running the script returns the
following:

$ plt-r6rs use-mod2.ss
Instantiated mod2
At expand-time x=1
Instantiated mod2
At run-time x=1

The fact that x was incremented at compile-time has no effect at run-time, since the run-time
variable x belongs to a completely different instance of the module. In systems with single
instantiation instead, there is only a single instance of the module for all phases, so that incre-
menting x at expand-time has effect at run-time:

$ ikarus --r6rs-script use-mod2.ss
Instantiated mod2
At expand-time x=1
At run-time x=2

You would get the same with Ypsilon and Larceny (Larceny has explicit phasing but single in-
stantiation and if you import a module in more than one phase the variables are shared amongst
the phases, so that cross-phase side effects may happen).

The phase crossing effect only happens because the script is executed immediately after compi-
lation in the same process. Having compile-time effects affecting run-time values is evil, since
it breaks separate compilation. If we turn the script into a library and we compile it separately,
it is clear than the run-time value of x cannot be affected by the compile-time value of x (maybe
the code was compiled 10 years ago!).

24.3 Cross-phase side effects and separate compila-
tion

Let me explain in detail how separate compilation works in Ikarus, Ypsilon and PLT Scheme.
Suppose we turn the previous script into a library:

24.3. Cross-phase side effects and separate compilation 143

The Adventures of a Pythonista in Schemeland, Release 0.1

$ cat mod3.ss

#!r6rs
(library (experimental mod3)
(export run)
(import (rnrs) (sweet-macros) (for (experimental mod2) expand run))

(def-syntax m
(lambda (x)

(display "At expand-time x=")
(display (incr-x))
(newline)
"m-expanded"))

(define (run) ;; this is executed at runtime
(display "At run-time x=")
(display (incr-x))
(newline))

(m) ;; this is executed at expand time
)

and let us invoke this library though a script use-mod3.ss:

#!r6rs
(import (rnrs) (experimental mod3))
(run)

If we use PLT Scheme, the value of x is the same as before:

$ plt-r6rs use-mod3.ss
Instantiated mod2
At expand-time x=1
Instantiated mod2
Instantiated mod2
At run-time x=1

This is expected: turning a script into a library did not make anything magic happens (actually
mod2 is being instantiated once more during the compilation of mod3, but that should not be
surprising). On the other hand, things are very different if we run the same code under different
implementations.

For instance in Ypsilon the first time the script is run it prints three lines:

$ ypsilon --r6rs use-mod3.ss
Instantiated mod2
At expand-time x=1
At expand-time x=2
At run-time x=3

144 Chapter 24. Mutating variables across modules

The Adventures of a Pythonista in Schemeland, Release 0.1

However, if we run the script again it prints just two lines:

$ ypsilon --r6rs use-mod3.ss
Instantiated mod2
At run-time x=1

The reason is that the first time Ypsilon compiles the libraries, using the same module instance,
so that there is a single x variable which is incremented twice at expand time and once at
run-time. The second time there is nothing to recompile, so only the run-time x variable is
incremented, and there is no reference to the compile time instance.

The situation for Ikarus is slightly different. If we use the --r6rs-script flag we get the
same output as before, when mod3 was just a script:

$ ikarus --r6rs-script use-mod3.ss
Instantiated mod2
At expand-time x=1
At run-time x=2

However, this only happens because Ikarus is compiling all the libraries at the same time (whole
compilation). If we use separate compilation we get:

$ ikarus --compile-dependencies use-mod3.ss
Instantiated mod2
At expand-time x=1
Serializing "/home/micheles/gcode/scheme/experimental/mod3.sls.ikarus-fasl" ...
Serializing "/home/micheles/gcode/scheme/experimental/mod2.sls.ikarus-fasl" ...

As you see, the message At expand-time x=1 is printed when mod2 is compiled. If we
run the script use-mod3.ss now, we get just the run-time message:

$ ikarus --r6rs-script use-mod3.ss
Instantiated mod2
At run-time x=1

In Ikarus, Ypsilon and Larceny, the same invocation of this script returns different results for
the variable x, depending if the libraries have been precompiled or not. This is ugly and error
prone. The multiple instantiation mechanism of PLT Scheme has been designed to avoid this
problem: in PLT one consistently gets always the same result, which is the result one would
get with separation compilation.

I must notice that you could get the same behavior in non-PLT implementations by spawning
two separate processes, one after the other: the first to compile the script and its libraries, and
the second to execute it. That would make sure that incrementing x in the compilation phase
would not influence the value of x at run-time.

24.3. Cross-phase side effects and separate compilation 145

The Adventures of a Pythonista in Schemeland, Release 0.1

24.4 Conclusion

This is the last episode of part IV. You should have an idea of how the R6RS module system
works, and you should be able to grasp the reasons behind the different implementation choices.

In particular, it should be clear that side effects are tricky, that you cannot rely on the compi-
lation/visiting/instantiation procedure being the same in different implementations, that phase
separation means different things in different Scheme systems.

Still, I have left out many relevant things. In order to say everything there is to say about the
subject, I should have at least doubled the number of episodes.

I did not want to get lost in excessive detail. Instead, I have decided to continue my series
with another block of episodes about macros, and to fill the remaining gaps about the module
systems in future Adventures.

So, as always, stay tuned and keep reading!

146 Chapter 24. Mutating variables across modules

CHAPTER

TWENTYFIVE

BACK TO MACROS

Macros are the reason why I first became interested in Scheme, five or six years ago. At the
time - as at any time - there was a bunch of people trolling in comp.lang.python, arguing for
the addition of macros to the language. Of course most Pythonistas opposed the proposal.

At the time I had no idea of the advantages/disadvantages of macros and I felt quite ignorant
and powerless to argue. I never liked to feel ignorant, so I decided to learn macros, especially
Scheme macros, because they are the state of the art for what concerns the topic.

Nowadays I have some arguments to back up the position against macros. I have two main
objections, one technical (less important) and one political (more important).

The technical reason is that I do not believe in macros for languages without S-expressions.
There are plenty of examples of macro systems without S-expressions - for instance Dylan or
PLOT in the Lisp world and Logix and MetaPython in the Python world, but none of them ever
convinced me. Scheme macros are much better because of the homoiconicity of the language
(“homoiconicity” is just a big word for the code is data concept). [Notice that technically
Scheme macros work on syntax objects and not directly on S-expressions like traditional Lisp
macros, but this is a subtle point I will discuss when talking about hygiene; I can skip it for the
moment being.]

I have already stated in episode 12 my political objection, i.e. my belief that macros have a
high cost in terms of complication of the language (look how much complicated the R6RS
module system is!). Moreover, codes based on macros tends to be too clever, difficult to debug,
and sometime idiosyncratic; I do not want to maintain code such kind of code in a typical
enterprise context, with programmers of any kind of competence. Sometimes I wish that even
Python was a simpler language! There is a difference between simpler and dumber, of course.
I am not implying that every enterprise should adopt only enterprise-oriented languages; as a
matter of fact various cutting edge enterprises are taking advantage of non-conventional and/or
research-oriented languages, but I see them as exceptions to the general rule.

My opinion is based on the fact that on my daily work (I use Python exclusively there) I have
never felt the need for macros. For instance, I had occasion to write both small declarative
languages and small command-oriented languages, but they were so simple that I had no need
for Scheme macros. Actually, judging from my past experience, I think extremely unlikely that
I will ever need something as sophisticated as Scheme macros in my daily work. The one thing
that I miss in Python which Scheme has is pattern matching, not macros.

Having said that, I do not think that macros are worthless, and actually I think they are ex-
tremely useful and important in another domain, i.e. in the domain of design and research
about programming languages. Scheme is certainly not the only language where you can ex-

147

http://en.wikipedia.org/wiki/Dylan_programming_language
http://users.rcn.com/david-moon/PLOT/
http://www.livelogix.net
http://metapython.org/
http://en.wikipedia.org/wiki/Homoiconicity
http://www.artima.com/weblogs/viewpost.jsp?thread=240836

The Adventures of a Pythonista in Schemeland, Release 0.1

periment with language design, it is just the best language for this kind of tasks, at least in my
humble opinion.

For instance, a few months ago I have described an experiment I did with the Python meta object
protocol, in order to change how the object system work, and replace multiple inheritance with
traits. Even if in Python it is possible to customize the object system, I do not thing the approach
is optimal, because changing the semantics without changing the syntax does not feel right. In
Scheme I could have implemented the same with a custom syntax and in a somewhat less
magical way. I am interested with this kind of experiments, even if I will never use them in
production code, and I use Scheme in preference for such purposes.

25.1 Writing your own programming language

The major interest of Scheme macros for me lies in the fact that they enable every programmer
to write her own programming language. I think this is a valuable thing. Anybody who has
got opinions about language design, or about how an object system should should work, or
questions like “what would a language look like if it had feature X?”, can solve his doubts by
implementing the feature with macros.

Notice that I recognize that perhaps not everybody should design its own programming lan-
guage, and that xcertainly not everybody should distribute its own personal language. Nev-
ertheless, I think everybody can have opinions about language design. Experimenting with
macrology can help to put to test such opinions and to learn something.

The easiest approach is to start from a Domain Specific Language (DSL), which does not need
to be a fully grown programming language. For instance, in the Python world everybody is
implementing his own templating language to generate web pages. In my opinion, this a good
thing per se, the problem is that everybody is distributing his own language so that there is a
bit of anarchy.

Even for what concerns fully grown programming languages we see nowadays an explosion
of new languages, especially for the Java and the .NET platforms, since it is relatively easy to
implement a new language there. However, it still takes a substantial amount of work.

On the other hand, writing a custom language embedded in Scheme by means of macros is
much easier. I see Scheme as an excellent platform for implementing languages and experi-
menting with new ideas.

There is a quote of Ian Bicking about Web frameworks which struck me:

Sometimes Python is accused of having too many web frameworks. And it’s true, there are a
lot. That said, I think writing a framework is a useful exercise. It doesn’t let you skip over
too much without understanding it. It removes the magic. So even if you go on to use another
existing framework (which I’d probably advise you do), you’ ll be able to understand it better
if you’ve written something like it on your own.

You can the replace the words “web framework” with “programming language” and the quote
still makes sense. You should read my Adventures in this spirit: the ambition of the series is
to give to the readers the technical competence to write small Scheme-embedded languages by
means of macros. Even if you are not going to design your own language, macros will help
you to understand how languages work.

148 Chapter 25. Back to macros

http://www.artima.com/weblogs/viewpost.jsp?thread=246488
http://pythonpaste.org/webob/do-it-yourself.html

The Adventures of a Pythonista in Schemeland, Release 0.1

Personally I am interested in the technical competence, I do not want to write a new language.
There are already lots of languages out there, and writing a real language is a lot of grunt work,
because it means writing debugging tools, good error messages, wondering about portability,
interacting with an user community, et cetera et cetera.

25.2 Recursive macros with accumulators

The goal of learning macros well enough to implement a programming language is an ambitious
one; it is not something I can attain in one episode of the Adventures, nor in six. However, one
episode is enough to explain at least one useful technique which is commonly used in Scheme
macrology and which is good to know in order to reach our final goal, in time.

The technique I will discuss in this episode is writing recursive macros with accumulators. In
Scheme it is common to introduce an auxiliary variable to store a value which is passed in a
loop - we discussed it in episode 6 when talking about tail call optimization: the same trick can
be used in macros, at expand-time instead that at run-time.

In order to give an example I will define a macro cond minus (cond-) which works like cond,
but with less parenthesis. Here is an example:

(cond-
cond-1? return-1
cond-2? return-2

...
else return-default)

should expand to:

(cond
(cond-1? return-1)
(cond-2? return-2)

...
(else return-default))

Here is a solution, which makes use of an accumulator and of an auxiliary macro cond-aux:

25.2. Recursive macros with accumulators 149

http://www.artima.com/weblogs/viewpost.jsp?thread=240198

The Adventures of a Pythonista in Schemeland, Release 0.1

(def-syntax cond-aux
(syntax-match ()
(sub (cond-aux (acc ...))

#’(cond acc ...))
(sub (cond-aux (acc ...) x1)

#’(syntax-violation ’cond- "Mismatched pairs" ’(acc ... x1) ’x1))
(sub (cond-aux (acc ...) x1 x2 x3 ...)

#’(cond-aux (acc ... (x1 x2)) x3 ...))
))

(def-syntax (cond- x1 x2 ...)
(cond-aux () x1 x2 ...))

The code above should be clear. The auxiliary macro cond-aux is recursive: it works by col-
lecting the arguments x1, x2, ..., xn in the accumulator (acc ...). If the number of
arguments is even, at some point we end up having collected all the arguments in the accumu-
lator, which is then expanded into a standard conditional; if the number of arguments is even,
at some point we end up having collected all the arguments except one, and a "Mismatched
pairs" exception is raised. The user-visible macro cond- just calls cond-aux by setting
the initial value of the accumulator to (). The entire expansion and error checking is made at
compile time. Here is an example of usage:

> (let ((n 1))
(cond- (= n 1) ; missing a clause
(= n 2) ’two
(= n 3) ’three
else ’unknown))

Unhandled exception:
Condition components:

1. &who: cond-
2. &message: "Mismatched pairs"
3. &syntax:

form: (((= n 1) (= n 2)) (’two (= n 3)) (’three else) ’unknown)
subform: ’unknown

25.3 A trick to avoid auxiliary macros

I have nothing against auxiliary macros, however sometimes you may want to keep all the code
in a single macro. This is useful if you are debugging a macro since an auxiliary macro is
usually not exported. The trick is to introduce a literal to defined the helper macro inside the
main macro. Here is how it would work in this example:

(define-syntax cond-
(syntax-match (aux)
(sub (cond- aux (acc ...))

(cond acc ...))
(sub (cond- aux (acc ...) x1)

150 Chapter 25. Back to macros

The Adventures of a Pythonista in Schemeland, Release 0.1

(syntax-violation ’cond- "Mismatched pairs" ’(acc ... x1) ’x1))
(sub (cond- aux (acc ...) x1 x2 x3 ...)

(cond- aux (acc ... (x1 x2)) x3 ...))
(sub (cond- x1 x2 ...)

(cond- aux () x1 x2 ...))))

If you do not want to use a literal identifier, you can use a literal string instead:

(define-syntax cond-
(syntax-match ()
(sub (cond- "aux" (acc ...))

(cond acc ...))
(sub (cond- "aux" (acc ...) x)
(syntax-violation ’cond- "Mismatched pairs" ’(acc ... x) ’x))

(sub (cond- "aux" (acc ...) x1 x2 x3 ...)
(cond- "aux" (acc ... (x1 x2)) x3 ...))

(sub (cond- x1 x2 ...)
(cond- "aux" () x1 x2 ...))))

These tricks are quite common in Scheme macros: we may even call them design patterns.
In my opinion the best reference detailing these techniques and others is the Syntax-Rules
Primer for the Merely Eccentric, by Joe Marshall. The title is a play on the essay An Advanced
Syntax-Rules Primer for the Mildly Insane by Al Petrofsky.

Marshall’s essay is quite nontrivial, and it is intended for expert Scheme programmers. On the
other hand, it is child play compared to Petrofsky’s essay, which is intended for foolish Scheme
wizards ;)

25.3. A trick to avoid auxiliary macros 151

http://www.xs4all.nl/~{}hipster/lib/scheme/gauche/define-syntax-primer.txt
http://www.xs4all.nl/~{}hipster/lib/scheme/gauche/define-syntax-primer.txt
http://funcall.blogspot.com/
http://groups.google.com/group/comp.lang.scheme/browse_frm/thread/86c338837de3a020/eb6cc6e11775b619?#eb6cc6e11775b619
http://groups.google.com/group/comp.lang.scheme/browse_frm/thread/86c338837de3a020/eb6cc6e11775b619?#eb6cc6e11775b619

The Adventures of a Pythonista in Schemeland, Release 0.1

152 Chapter 25. Back to macros

CHAPTER

TWENTYSIX

MACROS TAKING MACROS AS
ARGUMENTS

There is no limit to the sophistication of macros: for instance, it is possible to define higher
order macros, i.e. macros taking other macros as arguments or macros expanding into other
macros. Higher order macros allow an extremely compact and elegant programming style; on
the other hand, they are exposed to the risk of making the code incomprehensible and pretty
hard to debug. I have already shown an example of macro expanding into a macro transformer
in episode 22, and explained the intricacies of the tower of meta-levels; in this episode instead I
will consider a much simpler class of higher order macros, macros taking macros as arguments.
Moreover, I will spend some time discussing the philosophy of Scheme and explaining the real
reason why there are so many parentheses.

26.1 Scheme as an unfinished language

Most programmers are used to work with a finished language. With finished, I mean that the
language provides not only a basic core of functionalities, but also a toolbox of ready-made
solutions making the life of the application programmer easier. Notice that here I am not
considering the quality of the library coming with the language (which is extremely important
of course) but language-level features, such as providing syntactic sugar for common use cases.

As a matter of fact, developers of the XXIth century take for granted a lot of language features
that were uncommon just a few years ago. This is particularly true for developers working
with dynamic languages, which are used to features like built-in support for regular expres-
sions, a standard object system with a Meta Object Protocol, a Foreign Function Interface, a
sockets/networking interface, support for concurrency via microthread and native threads and
multiprocesses and more; nowadays even Javascript has list comprehension and generators!

Modern finished languages spoil the programmer, and this is the reason why they are so much
popular. Of course not all finished languages are equivalent, and some are more powerful
and/or easier to use than others. Some programmers will prefer Python over Java, others will
prefer Ruby, or Scala, or something else, but the concept of finished language should be clear.
On the other hand Scheme, at least as specified in the R6RS standard - I am not talking about
concrete implementations here - is missing lots of the features that modern languages provide
out the box. Compared to the expectations of the modern developer, Scheme feels very much
like an unfinished language.

153

http://www.artima.com/weblogs/viewpost.jsp?thread=256848
https://developer.mozilla.org/en/New_in_JavaScript_1.7

The Adventures of a Pythonista in Schemeland, Release 0.1

I think the explanation for the current situation is more historical and social than technical.
On one hand, a lot of people in the Scheme world want Scheme to stay the way it is, i.e. a
language for language experimentations and research more than a language for enterprise work
(for instance a standard object system would effectively kill the ability to experiment with
other object systems and this is not wanted). On the other hand, the fact that there are so many
implementations of Scheme makes difficult/impossible to specify too much: this the reason
why there are no standard debugging tools for Scheme, but only implementation-specific ones.

Even if the Scheme language has been left unfinished - it does not matter if by choice or out
of necessity - it has been equipped with a built-in mechanism enabling the user to finish the
language according to his/her preferences. Such a mechanism is of course the mechanism
of macros. Actually, one of the main use of macros is to fill out the deficiencies left out by
the standard. Most people nowadays prefer to have ready-made solutions, because they have
deadlines, projects to complete and no time nor interest in writing things that should be made by
language designers, so they dismiss Scheme immediately after having having read the standard
specification.

However, one should make a distinction: while it is true that Scheme - in the sense of the
language specified by the R6RS standard - is unfinished, concrete implementations of Scheme
tends to be much more complete. If you give up portability and you marry a specific imple-
mentations you get all the benefit of a “finished” language. Consider for instance PLT Scheme,
or Chicken Scheme, which are two big Scheme implementations: they have support for every
language-level feature you get in a mainstream language and decent size libraries so that they
are perfectly usable (and used) for practical tasks you could do with Python or Ruby or even a
compiled language. Another option if you want to use Scheme in an enterprise context is to use
a Scheme implementation running on the Java virtual machine (SISC, Kawa ...) or on the .NET
platform (IronScheme). Alternatively, you could use a Scheme-like language such as Clojure,
developed by Rich Hickey.

Clojure runs on the Java Virtual Machine, it is half lisp and half Scheme, it has a strong func-
tional flavour in it, and an interesting support to concurrency. It also shares the following
caracteristics with Python/Ruby/Perl/...:

1. it is a one-man language (i.e. it is not a comprimise language made by a committee) with
a clear philosophy and internal consistency;

2. it is language made from scratch, with no preoccupations of backward compatibility;

3. it provides special syntax/libraries for common operations (syntax conveniences) that
would never enter in the Scheme standard.

Such caracteristics make Clojure very appealing. However, personally I have no need to interact
with the Java platform professionally (and even there I would probably choose Jython over
Clojure for reason of greater familiarity) so I have not checked out Clojure and I have no idea
about it except what you can infer after reading its web site. If amongst my readers there
is somebody with experience in Clojure, please feel free to add a comment to this article. I
personally am using Scheme since I am interested in macrology and no language in existence
can beat Scheme in this respect. Also, I am using for Scheme for idle speculation and not to
get anything done ;-)

154 Chapter 26. Macros taking macros as arguments

http://clojure.org/
http://clojure.org/concurrent_programming
http://clojure.org/special_forms

The Adventures of a Pythonista in Schemeland, Release 0.1

26.2 Two second order macros to reduce parentheses

A typical example of idle speculation is the following question: can we find a way to reduce
the number of parentheses required in Scheme? Finding tricks for reducing parentheses is
a pointless exercise per se, but it gives a reason to teach a few other macro programming
techniques - in particular second order macros taking macros as arguments - and to explain
why parentheses are actually good and should not be removed.

In episode 25 I defined a recursive cond- macro taking less parentheses than a regular cond,
using an accumulator. Here I will generalize that approach, by abstracting the accumulator
functionality into a second order macro, called collecting-pairs, which takes as input
another macro and a sequence of arguments, and calls the input macro with the arguments
grouped in pairs. That makes it possible to call with less parentheses any macro of the form
(macro expr ... (a b) ...), by calling it as (collecting-pairs (macro
expr ...) a b ...).

Here is the code implementing collecting-pairs:

(def-syntax collecting-pairs
(syntax-match ()

(sub (collecting-pairs (name arg ...) x1 x2 ...)
#’(collecting-pairs "helper" (name arg ...) () x1 x2 ...))
(sub (collecting-pairs "helper" (name arg ...) (acc ...))
#’(name arg ... acc ...))
(sub (collecting-pairs "helper" (name arg ...) (acc ...) x)
#’(syntax-violation ’name "Mismatched pairs" ’(name arg ... acc ... x) ’x))
(sub (collecting-pairs "helper" (name arg ...) (acc ...) x1 x2 x3 ...)
#’(collecting-pairs "helper" (name arg ...) (acc ... (x1 x2)) x3 ...))
))

collecting-pairs can be used with many syntactic expressions like cond, case,
syntax-rules, et cetera. Here is an example with the case expression:

> (collecting-pairs (case 1)
(1) ’one
(2) ’two
(3) ’three
else ’unknown))

one

Using a second order macro made us jump up one abstraction level, by encoding the accumula-
tor trick into a general construct that can be used with a whole class of cond-style forms. How-
ever, collecting-pairs cannot do anything to reduce parentheses in let-style forms. To
this aim we can introduce a different second order macro, such as the following “colon” macro:

(def-syntax : ; colon macro
(syntax-match ()

(sub (: let-form e); do nothing
#’e)

(sub (: let-form e1 e2)

26.2. Two second order macros to reduce parentheses 155

http://www.artima.com/weblogs/viewpost.jsp?thread=258580
http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-14.html#node_idx_384

The Adventures of a Pythonista in Schemeland, Release 0.1

(syntax-violation ’: "Odd number of arguments" #’let-form))
(sub (: let-form patt value rest ... expr)

#’(let-form ((patt value)) (: let-form rest ... expr))
(identifier? #’let-form)
(syntax-violation ’: "Not an identifier" #’let-form))

))

The colon macro expects as argument another macro, the let-form, which can be any bind-
ing macro such that (let-form ((patt value) ...) expr) is a valid syntax. For
instance (let ((name value) ...) expr) can be rewritten as (: let name
value ... expr), by removing four parentheses. Here is a test with let*:

(test "colon-macro" (: let* x 1 y x (+ x y)) 2)

The latest version of the aps package provides a colon : form in the (aps lang)module. In
the following Adventures I will never use collecting-pairs and : since I actually like
parentheses. The reason is that parens make it easier to write macros with pattern matching
techniques, as I argue in the next paragraph.

26.3 The case for parentheses

Paren-haters may want to use collecting-pairs and the colon macro to avoid paren-
theses. They may even go further, and rant that the basic Scheme syntax should require less
parentheses. However, that would be against the Scheme philosophy: according to the Scheme
philosophy a programmer should not write code, he should write macros writing code for him.
In other words, automatic code generation is favored over manual writing.

When writing macros, it is much easier to use a conditional with more parentheses like cond
than a conditional with less parentheses like cond-. The parentheses allows you to group ex-
pressions in group that can be repeated via the ellipsis symbol; in practice, you can write things
like (cond (cnd? do-this ...) ...) which cannot be written with cond-. On
the other hand, different languages adopt different philosophies; for instance Paul Graham’s
Arc uses less parentheses. This is possible since it does not provide a macro system based on
pattern matching (which is a big minus in my opinion).

Is it possible to have both a syntax with few parentheses for writing code manually and a syntax
with many parentheses for writing macros? Clearly the answer is yes: the price to pay is to
double the constructs of the language. Python is an example of such a language with a two-
level syntax: it provides both a simple syntax, limited but able to cover the most common case,
and a fully fledged syntax, giving all the power you need, which however is used rarely. For
instance, here a table showing some of the most common syntactic sugar used in the Python
language:

Simplified syntax Full syntax
obj.attr getattr(obj, ‘attr’)
x + y x.__add__(y)
c = C() c = C.__new__(C); c.__init__()

In principle, the Scheme language could follow exactly the same route, by providing syntactic

156 Chapter 26. Macros taking macros as arguments

http://www.paulgraham.com/arcll1.html

The Adventures of a Pythonista in Schemeland, Release 0.1

sugar for the common cases and a low level syntax for the general case. For instance, in the
case of the conditional syntax, we could have a fully parenthesized __cond__ syntax for
usage in macros and cond syntax with less parens for manual usage. That, in theory: in
practice Scheme only provides the low level syntax, leaving to the final user the freedom (and
the burden) of implementing his preferred high level syntax. Since syntax is such a subjective
topic, in practice I think it is impossible for a language designed by a committee to converge
on an high level syntax. This is a consequence of the infamous bikeshed effect.

The bikeshed effect is typical of any project designed by a committee: when it comes to propos-
ing advanced functionalities that very few can understand, it is easy to get approval from the
larger community. However, when it comes to simple functionality of common usage, every-
body has got a different opinion and it is practically impossible to get anything approved at
all.

To avoid that, the standard does not provide directly usable instruments: instead, it provides
general instruments which are intended as building blocks on that of which everybody can
write the usable abstractions he/she prefers. On the other hand Lisp-like languages designed
by a BDFL (like Arc and Clojure) provide a high level syntax, which is the one the BDFL like.
You may try it and see if you like it. Good luck!

26.3. The case for parentheses 157

http://en.wikipedia.org/wiki/Bikeshed
http://www.artima.com/weblogs/viewpost.jsp?thread=235725
http://www.paulgraham.com/arcll1.html
http://clojure.org/

The Adventures of a Pythonista in Schemeland, Release 0.1

158 Chapter 26. Macros taking macros as arguments

CHAPTER

TWENTYSEVEN

SYNTAX OBJECTS

Scheme macros - as standardized in the R6RS document - are built over the concept of syntax
object. The concept is peculiar to Scheme and has no counterpart in other languages (including
Common Lisp), therefore it is worth to spend some time on it.

A syntax-object is a kind of enhanced s-espression: it contains the source code as a list of
symbols and primitive values, but also additional informations, such as the name of the file
containing the source code, the position of the syntax object in the file, a set of marks to
distinguish identifiers according to their lexical context, and more.

The easiest way to get a syntax object is to use the syntax quoting operation, i.e. the syntax
(#’) symbol you have seen in all the macros I have defined until now. Consider for instance
the following script, which displays the string representation of the syntax object #’1:

$ cat x.ss
(import (rnrs))
(display #’1)

If you run it under PLT Scheme you will get

$ plt-r6rs x.ss
#<syntax:/home/micheles/Dropbox/gcode/artima/scheme/x.ss:2:11>

In other words, the string representation of the syntax object #’1 contains the full pathname
of the script and the line number/column number where the syntax object appears in the source
code. Clearly this information is pretty useful for tools like IDEs and debuggers. The internal
implementation of syntax objects is not standardized at all, so that you get different informa-
tions in different implementations. For instance Ikarus gives

$ ikarus --r6rs-script x.ss
#<syntax 1 [char 28 of x.ss]>

i.e. in Ikarus syntax objects do not store line numbers, they just store the character position
from the beginning of the file. If you are using the REPL you will have less information, of
course, and even more implementation-dependency. Here are a few example of syntax objects
obtained from syntax quoting:

> #’x ; convert a name into an identifier
#<syntax x>

159

The Adventures of a Pythonista in Schemeland, Release 0.1

> #’’x ; convert a literal symbol
#<syntax ’x>
> #’1 ; convert a literal number
#<syntax 1>
> #’"s" ; convert a literal string
#<syntax "s">
> #’’(1 "a" ’b) ; convert a literal data structure
#<syntax ’(1 "a" ’b)>

Here I am running all my examples under Ikarus; your Scheme system may have a slightly
different output representation for syntax objects.

In general #’ can be “applied” to any expression:

> (define syntax-expr #’(display "hello"))
> syntax-expr
#<syntax (display "hello")>

It is possible to extract the s-expression underlying the syntax object with the
syntax->datum primitive:

> (equal? (syntax->datum syntax-expr) ’(display "hello"))
#t

Different syntax-objects can be equivalent: for instance the improper list of syntax ob-
jects (cons #’display (cons #’"hello" #’())) is equivalent to the syntax ob-
ject #’(display "hello") in the sense that both corresponds to the same datum:

> (equal? (syntax->datum (cons #’display (cons #’"hello" #’())))
(syntax->datum #’(display "hello")))

#t

The (syntax) macro is analogous to the (quote) macro. Mreover, there is a
quasisyntax macro denoted with #‘ which is analogous to the quasiquote macro (‘).
In analogy to the operations comma (,) and comma-splice (,@) on regular lists, there are
two operations unsyntax #, (sharp comma) e unsyntax-splicing #,@ (sharp comma
splice) on lists and improper lists of syntax objects.

Here is an example using sharp-comma:

> (let ((user "michele")) #‘(display #,user))
(#<syntax display> "michele" . #<syntax ()>)

Here is an example using sharp-comma-splice:

> (define users (list #’"michele" #’"mario"))
> #‘(display (list #,@users))
(#<syntax display>
(#<syntax list> #<syntax "michele"> #<syntax "mario">) . #<syntax ()>)

160 Chapter 27. Syntax objects

The Adventures of a Pythonista in Schemeland, Release 0.1

Notice that the output - in Ikarus - is an improper list. This is somewhat consistent with the be-
havior of usual quoting: for usual quoting ’(a b c) is a shortcut for (cons* ’a ’b ’c
’()), which is a proper list, and for syntax-quoting #’(a b c) is equivalent to (cons*
#’a #’b #’c #’()), which is an improper list. The cons* operator here is a R6RS short-
cut for nested conses: (cons* w x y z) is the same as (cons w (cons x (cons y
z))).

However, the result of a quasi quote interpolation is very much implementation-dependent:
Ikarus returns an improper list, but other implementations returns different results; for instance
Ypsilon returns a proper list of syntax objects whereas PLT Scheme returns an atomic syntax
object. The lesson here is that you cannot rely on properties of the inner representation of syntax
objects: what matters is the code they correspond to, i.e. the result of syntax->datum.

It is possible to promote a datum to a syntax object with the datum->syntax procedure,
but in order to do so you need to provide a lexical context, which can be specified by using an
identifier:

> (datum->syntax #’dummy-context ’(display "hello"))
#<syntax (display "hello")

(the meaning of the lexical context in datum->syntax is tricky and I will go back to that in
a future episode).

27.1 What syntax-match really is

syntax-match is a general utility to perform pattern matching on syntax objects; it takes a
syntax object in output and returns a syntax object in output. Here is an example of a simple
transformer based on syntax-match:

> (define transformer
(syntax-match ()
(sub (name . args) #’name))); return the name as a syntax object

> (transformer #’(a 1 2 3))
#<syntax a>

For convenience, syntax-match also accepts a second syntax (syntax-match x (lit
...) clause ...) to match syntax expressions directly. This is more convenient than
writing ((syntax-match (lit ...) clause ...) x). Here is a simple exam-
ple:

> (syntax-match #’(a 1 2 3) ()
(sub (name . args) #’args)); return the args as a syntax object

#<syntax (1 2 3)>

Here is an example using quasisyntax and unsyntax-splicing:

27.1. What syntax-match really is 161

The Adventures of a Pythonista in Schemeland, Release 0.1

> (syntax-match #’(a 1 2 3) ()
(sub (name . args) #‘(name #,@#’args)))

(#<syntax a> #<syntax 1> #<syntax 2> #<syntax 3>)

As you see, it easy to write hieroglyphs if you use quasisyntax and
unsyntax-splicing. You can avoid that by means of the with-syntax form:

> (syntax-match #’(a 1 2 3) ()
(sub (name . args) (with-syntax (((a ...) #’args)) #’(name a ...))))

(#<syntax a> #<syntax 1> #<syntax 2> #<syntax 3>)

The pattern variables introduced by with-syntax are automatically expanded inside the
syntax template, without need to resort to the quasisyntax notation (i.e. there is no need for #‘
#, #,@).

27.2 What macros really are

Macros are in one-to-one correspondence with syntax transformers, i.e. every macro is associ-
ated to a transformer which converts a syntax object (the macro and its arguments) into another
syntax object (the expansion of the macro). Scheme itself takes care of converting the input
code into a syntax object (if you wish, internally there is a datum->syntax conversion) and
the output syntax object into code (an internal syntax->datum conversion).

Consider for instance a macro to apply a function to a (single) argument:

(def-syntax (apply1 f a)
#’(f a))

This macro can be equivalently written as

(def-syntax apply1 (syntax-match () (sub (apply1 f a) (list #’f #’a))))

The sharp-quoted syntax is more readable, but it hides the underlying list representation which
in some cases is pretty useful. This second form of the macro is more explicit, but still it
relies on syntax-match. It is possible to provide the same functionality without using
syntax-match as follows:

(def-syntax apply1
(lambda (x)

162 Chapter 27. Syntax objects

The Adventures of a Pythonista in Schemeland, Release 0.1

(let+ ((macro-name func arg) (syntax->datum x))
(datum->syntax #’apply1 (list func arg)))))

Here the macro transformer is explicitly written as a lambda function, and the pattern matching
is performed by hand by converting the input syntax object into a list and by using the list
destructuring form let+ introduced in episode 15. At the end, the resulting list is converted
back to a syntax object in the context of apply1. Here is an example of usage:

> (apply1 display "hey")
hey

sweet-macros provide a convenient feature: it is possible to extract the associated trans-
former for each macro defined via def-syntax. For instance, here is the transformer associ-
ated to the apply1 macro:

> (define tr (apply1 <transformer>))
> (tr #’(apply1 display "hey"))
#<syntax (display "hey")>

The ability to extract the underlying transformer is useful in certain situations, in particular
when debugging. It can also be exploited to define extensible macros, and I will come back to
this point in the future.

27.3 A nicer syntax for association lists

The previous paragraphs were a little abstract and probably of unclear utility (but what would
you expect from an advanced macro tutorial? ;). Now let me be more concrete. My goal is
to provide a nicer syntax for association lists (an association list is just a non-empty list of
non-empty lists) by means of an alist macro expanding into an association list. The macro
accepts a variable number of arguments; every argument is of the form (name value) or
it is a single identifier: in this case latter case it must be magically converted into the form
(name value)where value is the value of the identifier, assuming it is bound in the current
scope, otherwise a run time error is raised "unbound identifier". If you try to pass an
argument which is not of the expected form, a compile time syntax error must be raised. In
concrete, the macro works as follows:

(test "simple"
(let ((a 0))

(alist a (b 1) (c (* 2 b))))
’((a 0) (b 1) (c 2)))

(test "with-error"
(catch-error (alist a))
"unbound variable")

Here is the implementation:

27.3. A nicer syntax for association lists 163

http://www.artima.com/weblogs/viewpost.jsp?thread=249681

The Adventures of a Pythonista in Schemeland, Release 0.1

(def-syntax (alist arg ...)
(with-syntax ((

((name value) ...)
(map (syntax-match ()

(sub n #’(n n) (identifier? #’n))
(sub (n v) #’(n v) (identifier? #’n)))

#’(arg ...))))
#’(let* ((name value) ...)

(list (list ’name name) ...))))

The expression #’(arg ...) expands into a list of syntax objects which are then trans-
formed by the syntax-match transformer, which converts identifiers of the form n into
couples of the form (n n), whereas it leaves couples (n v) unchanged, just checking that n
is an identifier. This is a typical use case for syntax-match as a list matcher inside a bigger
macro. We will see other use cases in the next Adventures.

164 Chapter 27. Syntax objects

CHAPTER

TWENTYEIGHT

HYGIENIC MACROS

In episode 9 I noted that Scheme provides three major macro systems (syntax-rules,
syntax-case and define-macro), yet I went on to discuss my own personal macro sys-
tem, sweet-macros. The decision was motivated by various reasons. First of all, I did not
want to confuse my readers by describing too many macro systems at the same time. Secondly,
I wanted to make macros easier and more debuggable. Finally, sweet-macros are slightly
more powerful than the other macro systems, with a better support for guarded patterns and
with a few extensibility features which I have not shown yet (but I like to keep some trick
under my sleeve ;).

After 19 episodes about macros, I can safely assume that my readers are not beginners anymore.
It is time to have a look at the larger Scheme world and to compare/contrast sweet-macros
with the other macro systems. I do not want to discuss all the macro systems in existence here,
therefore I will skip a few interesting systems such as syntactic closures and explicit renaming
macros. However, readers interested in alternative macro systems for Scheme should have a
look at this excellent post by Alex Shinn which summarizes the current situation better than I
could do. Notice that Alex is strongly biased against syntax-case and very much in favor of
explicit renaming macros. The two systems are not incompatible though, and actually Larceny
provides a syntax-case implementation built on top of explicit renaming macros (see also
SRFI-72).

28.1 syntax-match vs syntax-rules

syntax-rules can be quite trivially defined in terms of syntax-match:

(def-syntax (syntax-rules (literal ...) (patt templ) ...)
#’(syntax-match (literal ...) (sub patt #’templ) ...))

As you see, the main difference between syntax-rules (apart for a missing sub) is that
syntax-rules automatically adds the syntax-quote #’ operator to you templates. That
means that you cannot use quasisyntax tricks and that syntax-rules is strictly less pow-
erful than syntax-match. The other difference is that syntax-rules macros do not
have guarded patterns; the most direct consequence is that providing good error messages for
incorrect syntax is more difficult. You may learn everything you ever wanted to know about
syntax-rules in the Syntax-Rules Primer for the Mildly Insane by Joe Marshall.

165

http://www.artima.com/weblogs/viewpost.jsp?thread=240804
http://lists.gnu.org/archive/html/chicken-users/2008-04/msg00013.html
http://srfi.schemers.org/srfi-72/srfi-72.html
http://groups.google.com/group/comp.lang.scheme/browse_frm/thread/86c338837de3a020/eb6cc6e11775b619?#eb6cc6e11775b619

The Adventures of a Pythonista in Schemeland, Release 0.1

28.2 syntax-match vs syntax-case

In principle, syntax-case could be defined in terms of syntax-match as follows:

(def-syntax syntax-case
(syntax-match ()
(sub (syntax-case x (literal ...) (patt guard skel) ...)
#’(syntax-match x (literal ...) (sub patt skel guard) ...))

(sub (syntax-case x (literal ...) (patt skel) ...)
#’(syntax-match x (literal ...) (sub patt skel) ...))

))

In reality, syntax-case is a Scheme primitive and syntax-match is defined on top of
it. So, syntax-case has theoretically the same power as syntax-match, but in practice
syntax-match is more convenient to use.

The major syntactic difference is the position of the guard, which in syntax-case is posi-
tioned before the skeleton, whereas in syntax-match is positioned after the skeleton I did
spent a lot of time thinking about the right position for the guard: I hate gratuitous breaking,
but I convinced myself that the position of the guard in syntax-case is really broken, so I
had to fix the issue. The problem with syntax-case is that while the pattern is always in
the first position, you never know what is in the second position: it could be the guard or the
template; in order to distinguish the possibilities you have to check if there is a third expression
in the clause and that is annoying,

In syntax-match the template is always in the second position; if there is something in
the third position, it is always a guard; moreover, there could be another expression in the
clause (in the fourth position) which is used as alternative template if the guard is not satis-
fied. The advantage of having fixed positions is that it is easier to write higher order macros
expanding to syntax-match transformers (syntax-match itself is implemented in terms
of syntax-case where the template are not in fixed position and I had to make the imple-
mentation more complex just to cope with that).

You may learn (nearly) everything there is to know about syntax-case in the the book The
Scheme Programming Language by Kent Dybvig.

28.3 syntax-match versus define-macro

Nowadays macros based on define-macro are much less used than in past because macro
systems based on pattern matching are much more powerful, easier and safer to use. The R6RS
specification made syntax-case enter in the standard and it is the preferred macro system
for most implementation.

Nowadays, there is a good chance that your Scheme implementation does not provide
define-macro out of the box, therefore you need to implement it in term of syntax-case
(or syntax-match). Here is an example of such an implementation:

(def-syntax define-macro
(syntax-match ()

166 Chapter 28. Hygienic macros

http://www.scheme.com/tspl3/
http://www.scheme.com/tspl3/

The Adventures of a Pythonista in Schemeland, Release 0.1

(sub (define-macro (name . params) body1 body2 ...)
#’(define-macro name (lambda params body1 body2 ...)))

(sub (define-macro name expander)
#’(def-syntax (name . args)

(datum->syntax #’name (apply expander (syntax->datum #’args)))))
))

The code should be clear: the arguments of the macro are converted into a regular list which is
then transformed with the expander, and converted back into a syntax object in the context of
the macro. define-macro macros are based on simple list manipulations and are very easy
to explain and to understand: unfortunately, they are affected by the hygiene problem.

You can find examples of use of define-macro in many references; I learned it from Teach
Yourself Scheme in Fixnum Days by Dorai Sitaram.

28.4 The hygiene problem

If you have experience in Common Lisp or other Lisp dialects, you will have heard about the
problem of hygiene in macros, a.k.a. the problem of variable capture. As Paul Graham puts
it, errors caused by variable capture are rare, but what they lack in frequency they make up
in viciousness. The hygiene problem is the main reason why define-macro is becoming
less and less used in the Scheme world. PLT Scheme has being deprecating it for years and
nowadays even Chicken Scheme, which traditionally used define-macro, has removed it
from the core, by using hygienic macros instead: this is the reason why the current Chicken
(Chicken 4) is called “hygienic Chicken”.

You can find good discussions of the hygiene problem in Common Lisp in many places; I
am familiar with Paul Graham’s book On Lisp which I definitively recommend: chapter 9
on variable capture has influenced this section. Another good reference is the chapter about
syntax-case - by Kent Dybvig - in the book Beautiful Code. Here I will give just a short
example exhibiting the problem, for the sake of the readers unfamiliar with it.

Consider this “dirty” definition of the for loop:

(define-macro (dirty-for i i1 i2 . body)
‘(let ((start ,i1) (stop ,i2))

(let loop ((,i start))
(unless (>= ,i stop) ,@body (loop (+ 1 ,i))))))

28.4. The hygiene problem 167

http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.ccs.neu.edu/home/dorai/t-y-scheme/t-y-scheme-Z-H-1.html
http://www.paulgraham.com/onlisp.html
http://www.cs.indiana.edu/~{}dyb/pubs/bc-syntax-case.pdf
http://www.cs.indiana.edu/~{}dyb/pubs/bc-syntax-case.pdf
http://oreilly.com/catalog/9780596510046/

The Adventures of a Pythonista in Schemeland, Release 0.1

Superficially define-macro looks quite similar to def-syntax, except that in the macro
body you need to a add a comma in front of each macro argument argument. Internally, how-
ever, macros based on define-macro are completely different. In particular, they are not
safe under variable capture and that may cause surprises. For instance, code such as

> (let ((start 42))
(dirty-for i 1 3 (display start) (newline)))

1
1

prints the number 1 (twice) and not the number 42!

The reason is clear if you expand the macro (notice the if you implement define-macro in
terms of syntax-match then syntax-expand still works):

> (syntax-expand (dirty-for i 1 3 (display start) (newline)))
(let ((start 1) (stop 3))
(let loop ((i start))
(unless (>= i stop) (display start) (newline)

(loop (+ 1 i)))))

Since the inner variable start is shadowing the outer variable start, the number 1 is printed
instead of the number 42. The problem can be solved by introducing unique identifiers in the
macro by means of gensym (gensym is not in the R6RS standard, but in practice every
Scheme implementation has it; for convenience I have included it in my (aps compat)
compatibility library).

The dirty-formacro can be improved to use gensym for every variable which is internally
defined (and it is not a macro argument):

(define-macro (less-dirty-for i i1 i2 . body)
(let ((start (gensym)) (stop (gensym)) (loop (gensym)))
‘(let ((,start ,i1) (,stop ,i2))

(let ,loop ((,i ,start))
(unless (>= ,i ,stop) ,@body (,loop (+ 1 ,i)))))))

> (let ((start 42))
(less-dirty-for i 1 3 (display start) (newline)))

42
42

less-dirty-for works because all internal variables have now unique names that cannot
collide with existing identifiers by construction. You can see the names used internally by
invoking syntax-expand (notice that by construction such names change every time you
expand the macro):

> (syntax-expand (less-dirty-for i 1 3 (display i))); in Ikarus
(let ((#{g0 |K!ZoUGmIIl%SrMfI|} 1) (#{g1 |qecoGeEAOv0R8$%0|} 3))

(let #{g2 |kD?xfov61j0$G1=M|} ((i #{g0 |K!ZoUGmIIl%SrMfI|}))

168 Chapter 28. Hygienic macros

The Adventures of a Pythonista in Schemeland, Release 0.1

(unless (>= i #{g1 |qecoGeEAOv0R8$%0|}) (display i)
(#{g2 |kD?xfov61j0$G1=M|} (+ 1 i)))))

Unfortunately less-dirty-for is not really clean. gensym cannot do anything to solve
the free-symbol capture problem (I am using Paul Graham’s terminology here).

The problem is that identifiers used (but not defined) in the macro have the scope of expanded
code, not the scope of the original macro: in particular, if the outer scope in expanded code
redefines the meaning of an identifier used internally, the macro will not work as you would
expect. Consider for instance the following expression:

> (let ((unless ’unless))
(less-dirty-for i 1 3 (display i)))

If you try to run this, your system will go into an infinite loop!

The problem here is that shadowing unless in the outer scope affects the inner working of
the macro (I leave as an exercise to understand what exactly is going on). As you can easily
see, this kind of problem is pretty tricky to debug: in practice, it means that the macro user is
forced to know all the identifiers that are used internally by the macro.

On the other hand, if you use hygienic macros, all the subtle problems I described before simply
disappear and you can write a clean for loop just as it should be written:

(def-syntax (clean-for i i1 i2 body1 body2 ...)
#’(let ((start i1) (stop i2))

(let loop ((i start))
(unless (>= i stop) body1 body2 ... (loop (+ 1 i))))))

Everything works fine with this definition, and the macro looks even better, with less commas
and splices ;-)

That’s all for today. The next episode will discuss how to break hygiene on purpose, don’t miss
it!

28.4. The hygiene problem 169

The Adventures of a Pythonista in Schemeland, Release 0.1

170 Chapter 28. Hygienic macros

CHAPTER

TWENTYNINE

BREAKING HYGIENE

In the previous episode I said that hygienic macros are good, since they solve the variable
capture problem. However, purely hygienic macros introduce a problem of their own, since
they make it impossible to introduce variables at all. Consider for instance the following trivial
macro:

(def-syntax (define-a x)
#’(define a x))

(define-a x) apparently expand to (define a x), so you may find the following sur-
prising:

> (define-a 1)
> a
Unhandled exception
Condition components:

1. &undefined
2. &who: eval
3. &message: "unbound variable"
4. &irritants: (a)

Why is the variable a not bound to 1? The problem is that hygienic macros never introduce
identifiers implicitly. Auxiliary names introduced in a macro are not visible outside and the
only names which enter in the expansion are the ones we put in. A mechanism to introduce
identifiers, i.e. a mechanism to break hygiene, is needed if you want to define binding forms.

29.1 datum->syntax revisited

Scheme has a builtin mechanism to break hygiene, and we already saw it: it is the
datum->syntax utility which converts literal objects (datums) into syntax objects. I have
shown datum->syntax at work in episodes 27 and 28 : it was used there to convert lists
describing source code into syntax objects. A more typical use case for datum->syntax is
to turn symbols into proper identifiers. Such identifiers can then be introduced in macros and
made visible to expanded code.

In order to understand the mechanism, you must always remember that identifiers in Scheme -
in the technical sense of objects recognized by the identifier? predicate - are not just raw

171

http://www.artima.com/weblogs/viewpost.jsp?thread=260195
http://www.artima.com/weblogs/viewpost.jsp?thread=260182
http://www.artima.com/weblogs/viewpost.jsp?thread=260195

The Adventures of a Pythonista in Schemeland, Release 0.1

symbols, they are syntax objects with lexical information attached to them. If you want to turn
a raw symbol into an identifier you must add the lexical information to it, and this is done by
copying the lexical information coming from the context object in datum->syntax.

For instance, here is how you can “fix” the macro define-a:

(def-syntax (define-a* x)
#‘(define #,(datum->syntax #’define-a* ’a) x))

The symbol ’a here is being promoted to a bona fide identifier, by adding to it the lexical
context associated to the macro name. You can check that the identifier a is really introduced
as follows:

> (define-a* 1)
> a
1

A more realistic example is to use syntax->datum to build new identifiers from strings.
For that purpose I have added an identifier-append utility in my (aps lang) library,
defined as follow:

;; take an identifier and return a new one with an appended suffix
(define (identifier-append id . strings)

(define id-str (symbol->string (syntax->datum id)))
(datum->syntax id (string->symbol (apply string-append id-str strings))))

Here is a simple def-book macro using identifier-append:

(def-syntax (def-book name title author)
(with-syntax (

(name-title (identifier-append #’name "-title"))
(name-author (identifier-append #’name "-author")))
#’(begin

(define name (vector title author))
(define name-title (vector-ref name 0))
(define name-author (vector-ref name 1)))))

def-book here is just as an example of use of identifier-append, it is not as a recom-
mended pattern to define records. There are much better ways to define records in Scheme, as
we will see in part VI of these Adventures.

Anyway, def-book works as follows. Given a single identifier name and two values it intro-
duces three identifiers in the current lexical scope: name (bound to a vector containing the two
values), name-title (bound to the first value) and name-author (bound to the second
value).

> (def-book bible "The Bible" "God")
> bible
#("The Bible" "God")
> bible-title
"The Bible"

172 Chapter 29. Breaking hygiene

The Adventures of a Pythonista in Schemeland, Release 0.1

> bible-author
"God"

29.2 Playing with the lexical context

The lexical context is just the set of names which are visible to an object in a given lexical
position in the source code. Here is an example of a lexical context which is particularly
restricted:

#!r6rs
(library (experimental dummy-ctxt)
(export dummy-ctxt)
(import (only (rnrs) define syntax))
(define dummy-ctxt #’here)
)

The identifier #’here only sees the names define, syntax and dummy-ctxt: this is the
lexical context of any object in its position in the source code. Had we not restricted the import,
the lexical context of #’here would have been the entire rnrs set of identifiers. We can use
dummy-ctxt to expand a macro into a minimal context. Here is an example of a trivial macro
expanding into such minimal context:

> (import (experimental dummy-ctxt))
> (def-syntax expand-to-car

(lambda (x) (datum->syntax dummy-ctxt ’car)))

The macro expand-to-car expands to a syntax object obtained by attaching to the symbol
’car the lexical context dummy-ctxt. Since in such lexical context the built-in car is not
defined, the expansion fails:

> (expand-to-car)
Unhandled exception
Condition components:
1. &undefined
2. &who: eval
3. &message: "unbound variable"
4. &irritants: (car)

A similar macro expand-to-dummy-ctxt instead would succeed since dummy-ctxt is
bound in that lexical context:

> (def-syntax expand-to-dummy-ctxt
(lambda (x) (datum->syntax dummy-ctxt ’dummy-ctxt)))

> (expand-to-dummy-ctxt)
#<syntax here [char 115 of /home/micheles/gcode/scheme/aps/dummy-ctxt.sls]>

29.2. Playing with the lexical context 173

The Adventures of a Pythonista in Schemeland, Release 0.1

In the definition of define-macro I gave in episode 28 I used the name of the defined macro
as lexical context. The consequence of this choice is that define-macro style macros are
expanded within the lexical context of the code where the macro is invoked. For instance in
this example

> (let ((x 42))
(define-macro (m) ’x) ; (m) should expand to 42
(let ((x 43))
(m)))

43 ; surprise!

(m) expand to 43 since in the lexical context where the macro is invoked x is bound to 43.
However, this behavior is quite surprising, and most likely not what it is wanted. This is actually
another example of the free-symbol capture problem. It should be clear that the capture comes
from expanding the macro in the macro-call context, not in the macro-definition context.

29.3 Hygienic vs non-hygienic macro systems

Understanding non-hygienic macros is important if you intend to work in the larger Lisp world.
In the scheme community everybody thinks that hygiene is an essential feature and all major
Scheme implementations provide hygienic macros; nevertheless, in the rest of the world things
are different.

For instance, Common Lisp does not use hygienic macros and it copes with the variable capture
problem by using gensym; the free symbol capture problem is not solved, but it is extremely
rare, because Common Lisp has multiple namespaces and a package system.

The hygiene problem is more serious in Lisp-1 dialects like the newborns Arc and Clojure. Arc
macros behave just like define-macro and are fully unhygienic, whereas Clojure macros
are rather special, being nearly hygienic. In particular Clojure macros are not affected by the
free-symbol capture problem:

user=> (defmacro m[x] ‘(list ~x))
#’user/m
user=> (let [list 1] (m 2))
(2)

The reason is that Clojure is smart enough to recognize the fully qualified list object ap-
pearing at macro definition time (clojure.core/list) as a distinct object from the local
variable list bound to the number 1. Moreover, the ordinary capture problem can be solved
with gensym or even cooler feature, automatic gensyms (look at the documentation of the
syntax-quote reader macro if you want to know more). Speaking as a non-expert, Clojure
macros seem to fare pretty well with respect to the hygiene issue.

174 Chapter 29. Breaking hygiene

http://www.artima.com/weblogs/viewpost.jsp?thread=260195
http://en.wikipedia.org/wiki/Lisp-1#The_function_namespace
http://arclanguage.org/
http://clojure.org/
http://arclanguage.org/
http://clojure.org/Macros
http://clojure.org/reader#syntax-quote

The Adventures of a Pythonista in Schemeland, Release 0.1

It is worth mentioning that if you use a package system (like in Common Lisp) or a namespace
system (like in Clojure) in practice variable capture becomes pretty rare. In Scheme instead,
which uses a module system, hygiene is essential: if you are writing a module containing
macros which can be imported and expanded in an unknown lexical scope, in absence of hy-
giene you could introduce name clashes impossible to foresee in advance, and that could be
solved only by the final user, which however will likely be ignorant of how your library works.

This is why in Scheme the macro expansion is not literally inserted in the original code, and
a lot of magic takes place to avoid name clashes. In practice, the implementation of Scheme
macros takes care of distinguishing the introduced identifiers with some specific mechanism
(it could be based on marking the names, or on explicit renaming). As a consequence, the
mechanism of macro expansion is less simple to explain: you cannot just cut and paste the
result of the expansion in your original code.

Personally I have made my mind up and I am in the pro-hygiene camp now. I should admit that
for a long time I have been in the opposite camp, preferring the simplicity of define-macro
over the complexity of syntax-case. It turns out I was wrong. The major problem of
syntax-case is a cosmetic one: it looks very complex and cumbersome to use, but that can
be easily solved by providing a nicer API - which I did with sweeet-macros. Actually I
have been able to use sweet-macros for twenty episodes without explaining the intricacies
of the hygienic expansion.

Having attended to a talk on the subject at the EuroLisp Symposium, I will mention here that
there are ways to implement hygienic macros on top of defmacro in Common Lisp portably.
Therefore there is no technical reason why hygienic macros are not widespread in the whole
Lisp world, just a matter of different opinions on the importance of the problem and the different
tradeoffs. I believe that eventually all Lisp dialects will start using hygienic macros, but that
could take decades, because of inertia and backward-compatibility concerns.

29.3. Hygienic vs non-hygienic macro systems 175

http://www.european-lisp-symposium.org/
http://p-cos.net/documents/hygiene.pdf

The Adventures of a Pythonista in Schemeland, Release 0.1

176 Chapter 29. Breaking hygiene

CHAPTER

THIRTY

COMPARING IDENTIFIERS

This is the last episode of part V of my Adventures. In the latest episodes I have discussed
various technicalities of Scheme macros, such as the concepts of syntax object, hygiene and
lexical context. There is still an important subject to be discuss in order to become really
proficient with Scheme macros: identifier equality. Equality of identifiers is one of the trickiest
things in Scheme.

First of all, identifier equality is a compile-time concept which has nothing to do with the run-
time concept of equality between variables. Identifiers are not variables: they are syntax objects
with an underlying symbol and an underlying lexical context, which are known statically at
compile time. It is possible to know if an identifier is bound or not at compile-time, but the
value the identifier will be bound to at run-time is (in general) unknown.

Secondly, there is not a single concept of identifier equality, but different definitions are
possible. In this episode I will discuss three different predicates to compare identifiers:
symbol-identifier=?, bound-identifier=? and free-identifier=? (the
latter two are part of the R6RS standard).

30.1 symbol-identifier=?

The simplest concept of identifier equality is expressed by the following
symbol-identifier=? comparison function (for convenience, I have added the
symbol-identifier=? precedure to the (aps lang) library):

(define (symbol-identifier=? id1 id2)
(symbol=? (syntax->datum id1) (syntax->datum id2)))

Two identifiers are symbol-identifier=? if they are equal as symbols, once their lexical
information has been stripped out.

177

The Adventures of a Pythonista in Schemeland, Release 0.1

For instance, symbol-identifier=? can be used to find duplicated names in macros
defining name->value tables, such as the static-map macro I discussed in episode 22.
Moreover, symbol-identifier=? can be used to reject reserved identifiers (you may need
such functionality if are building a mini-language on top of Scheme and you want to reject a
few identifiers as language keywords), as in the following example:

(def-syntax (check-reserved id)
(syntax-violation ’check-reserved "Reserved identifier" #’id)
(exists (cut symbol-identifier=? #’id <>) (list #’reserved1 #’reserved2))
’non-reserved)

(check-reserved id) will raise a syntax-violation if id is one of the keyword
reserved1 or reserved2.

30.2 bound-identifier=?

symbol-identifier=? is simple and easy to understand, but it cannot be used in all
situations. Consider for instance the very first macro I wrote, in episode 9:

(def-syntax (multi-define (name1 name2 ...) (value1 value2 ...))
#’(begin (define name1 value1) (define name2 value2) ...))

It is quite common to write macros defining multiple bindings, such as multi-define.
multi-define as written does not perform any check for duplicated identifiers, so that it re-
lies on the standard behavior of R6RS scheme, raising an error. However, the standard behavior
only applies to programs and scripts, whereas the REPL is quite free to behaves differently and
indeed it does in most implementations:

> (multi-define (a a) (1 2)); in Ikarus, Ypsilon, ...
a
2

(in the REPL latter definitions override previous definitions). If you are unhappy with that, you
can introduce a bound-identifier=? check and raise a custom exception:

(def-syntax (multi-define (name1 name2 ...) (value1 value2 ...))
#’(begin (define name1 value1) (define name2 value2) ...)
(distinct? bound-identifier=? #’(name1 name2 ...))
(syntax-violation ’multi-define "Found duplicated identifier in"

#’(name1 name2 ...)))

Two identifiers are equal according to bound-identifier=? only if they have the
same name and the same marks. The name is misleading since the arguments of
bound-identifier=? are not required to be bound identifiers; a better name would be
strict-identifier=?.

You can check that multi-define correctly reject duplicated identifiers:

178 Chapter 30. Comparing identifiers

http://www.artima.com/weblogs/viewpost.jsp?thread=256848
http://www.artima.com/weblogs/viewpost.jsp?thread=240804

The Adventures of a Pythonista in Schemeland, Release 0.1

> (multi-define (a a) (1 2))
Unhandled exception
Condition components:

1. &who: multi-define
2. &message: "Found duplicated identifier in"
3. &syntax:

form: (a a)
subform: #f

In this simple example using symbol-identifier=? would work too. However this is not
the geneal case. Consider for instance the following macro expanding to multi-define:

(def-syntax (multi-define2 id value)
#’(multi-define (id id2) (value ’dummy)))

multi-define2 introduces a dummy identifier id2. Had we defined multi-define
in terms of symbol-identifier=?, calling multi-define2 with argument id equal
to id2 would have generated a spurious name clash. Fortunately, since we defined
multi-define in terms of bound-identifier=?, nothing bad happens:

> (multi-define2 id2 1)
id2
1

bound-identifier=? works in this case because the identifier id2 introduced by the
macro has different marks from the identifier id2 coming as an argument.

bound-identifier=? is not good for every circumstance. Consider for instance the fol-
lowing variation of multi-define, featuring a literal keyword as:

;; not checking for duplicated identifiers here
(define-syntax multi-def

(syntax-rules (as)
((multi-def (name as value) ...)
(begin (define name value) ...))))

This work, but the error messages could stand some improvement. For instance, if an user
misspells the infix identifier as, she gets a generic "invalid syntax" error, whereas we
would like to provide a customized error message showing the misspelled literal identifier.
Using bound-identifier=? we could try to solve the problem as follows:

(def-syntax (multi-def-bad (name as_ value) ...)
#’(begin (define name value) ...)
(for-all (lambda (id)

(when (not (bound-identifier=? id #’as))
(syntax-violation
’multi-def-bad "Offending infix syntax (expected ‘as’)" id)))

#’(as_ ...)))

30.2. bound-identifier=? 179

The Adventures of a Pythonista in Schemeland, Release 0.1

Unfortunately this solution does not work at all, since it raises an error even when the as
identifiers are spelled correctly:

> (multi-def-bad (x as y) (1 as 2))
Unhandled exception
Condition components:

1. &who: multi-def-bad
2. &message: "Offending infix syntax (expected ‘as’)"
3. &syntax:

form: as
subform: #f

4. &trace: #<syntax as>

The reason is that as is not bound-identifier=? to #’as. We need a less strict com-
parison predicate. To this aim the Scheme standard provides another equality procedures for
identifiers, free-identifier=?, which however is not quite right.

30.3 free-identifier=?

free-identifier=? is the most complicated equality predicate. I find its description in
the R6RS document particularly confusing and the name is misleading since the arguments
of free-identifier=? are not required to be free identifiers. A better name would be
lax-identifier=?. Two identifiers are free-identifier=? if

1. they are both bound to the same binding and they share the same name (or they shared
the same name before renaming at import time);

2. they are both unbound and they share the same name.

In implementations with full phase separation, the identifiers must also be both bound/unbound
in the same phase. In all other cases the two identifiers are not free-identifier=?. Here
is an example:

> (import (only (aps list-utils) range))
> (import (rename (aps list-utils) (range r)))
> (free-identifier=? #’r #’range)
#t

Notice that both symbol-identifier=? and bound-identifier=? would fail to
recognize the identity of range and r in this case.

It is important to know about free-identifier=? because in macros with literal identi-
fiers the literal identifiers are compared by using it, internally. That explain a behavior which
can be quite surprising.

30.4 Literal identifiers and auxiliary syntax

Consider the macro multi-def defined in the previous paragraph. This works:

180 Chapter 30. Comparing identifiers

http://www.r6rs.org/final/html/r6rs-lib/r6rs-lib-Z-H-13.html#node_idx_1142
http://www.r6rs.org/final/html/r6rs-lib/r6rs-lib-Z-H-13.html#node_idx_1142

The Adventures of a Pythonista in Schemeland, Release 0.1

> (let ()
(multi-def (x as 1) (y as 2))
(list x y))

(1 2)

But this does not work:

> (let ((as 2))
(multi-def (x as 1) (y as 2))
(list x y))

Unhandled exception
Condition components:

1. &message: "invalid syntax"
2. &syntax:

form: (multi-def (x as 1) (y as 2))
subform: #f

3. &trace: #<syntax (multi-def (x as 1) (y as 2))>

That looks surprising, but it is not once you realize that internally literal identifiers are com-
pared via free-identifier=?. In the second example as is bound, and therefore it is not
free-identifier=? to the literal identifier #’as, which is unbound.

The recommended “solution” is to introduce at top level some dummy definitions for the literal
identifiers you are going to use in your macro, and to export them. Following this policy, the
R6RS document defines a set of special macros, _, ..., else and =>, which lives in the
global namespace and are available to all R6RS programs.

Such macros are used as auxiliary syntax in various special forms, like cond and
syntax-case; for this reason they are usually called auxiliary keywords. The existence
of such global variables makes it impossible to redefine them at top-level in scripts (but it can
be done at the REPL); however they can be redefined locally, thus breaking the macros using
the auxiliary syntax:

> (let ((else #f))
(cond (else ’something)))

> ; does not return something

I think this is fundamentally broken: literal identifiers should be a concept internal to
the macro and they should not be exported. The mistake is that the R6RS requires
the literal identifiers to be matched via free-identifier=?, whereas they should be
matched with symbol-identifier=?. I never understood why the editors decided to
use free-identifier=?, perhaps because it makes it possible to rename the identi-
fiers used as literal identifiers, a feature that looks of little utility to me. All in all, I think
free-identifier=? is another dark corner of R6RS Scheme.

30.4. Literal identifiers and auxiliary syntax 181

The Adventures of a Pythonista in Schemeland, Release 0.1

182 Chapter 30. Comparing identifiers

CHAPTER

THIRTYONE

INDICES AND TABLES

• Index

• Search Page

183

	A bit of history
	My target
	A bit of history: Fortran and Lisp
	The algorithmic language Scheme

	About Scheme implementations
	About Scheme implementations
	About the library problem
	Additional difficulties

	Of parentheses and indentation
	Of parens and indentation
	About the prefix syntax

	Scheme bibliography (and a first program)
	Scheme resources for beginners
	A simple Scheme program

	About tail call optimization (and the module system)
	There are no for loops in Scheme
	There is no portable module system
	A simple benchmark

	The danger of benchmarks
	Beware of wasted cycles
	Beware of cheats
	Beware of naive optimization
	Recursion vs iteration

	Symbols and lists
	Symbols
	Lists
	Some example

	Quoting and quasi-quoting
	Quoting
	Quasi-quoting
	Programs writing programs
	Appendix: solution of the exercises

	Introduction to (sweet-)macros
	A minimal introduction to Scheme macros
	Which macrology should I teach?
	Enter sweet-macros
	An example: multi-define

	Features of (sweet-)macros
	syntax-match and introspection features of sweet-macros
	A couple of common mistakes
	Guarded patterns
	Literal identifiers

	The multiple evaluation problem (and easy-test)
	The problem of multiple evaluation
	Taking advantage of multiple evaluation
	A micro-framework for unit tests

	Are macros really useful?
	Are macros ``just syntactic sugar''?
	About the usefulness of macros for application programmers
	Appendix: a Pythonic for loop

	Micro-introduction to functional programming
	A minimal introduction to functional programming
	Functional data structures: pairs and lists
	Functional update

	Currying, partial application, and fold
	Higher order functions and curried functions
	Partial application: cut and cute
	fold-left and fold-right

	List destructuring
	About pattern matching
	A list destructuring binding form (let+)

	Multiple values (and opt-lambda)
	list destructuring versus let-values
	Variadic functions from unary functions
	Further examples of destructuring: opt-lambda

	List comprehension
	The APS library
	Implementing list comprehension
	A tricky point

	Streams
	The eight queens puzzle
	Iterators and streams
	Lazyness is a virtue

	The R6RS module system
	Modules are not first class objects
	Compiling Scheme modules vs compiling Python modules
	Compiling is not the same than executing

	The compilation and evaluation strategy of Scheme programs
	Interpreter semantics vs compiler semantics
	Macros and helper functions
	A note about incremental compilers and interpreters
	Discussion

	The different meanings of phase separation
	Compile-time, run-time and optimization-time
	Strong vs weak phase separation
	A note about politics

	The Dark Tower of Meta-levels
	An easy-looking macro with a deep portability issue
	Negative meta-levels
	Meta-levels greater than one
	Discussion

	Separate compilation and import semantics
	The mysterious import semantics
	More implementation-dependent details

	Mutating variables across modules
	Mutating internal variables
	Mutating variables across phases
	Cross-phase side effects and separate compilation
	Conclusion

	Back to macros
	Writing your own programming language
	Recursive macros with accumulators
	A trick to avoid auxiliary macros

	Macros taking macros as arguments
	Scheme as an unfinished language
	Two second order macros to reduce parentheses
	The case for parentheses

	Syntax objects
	What syntax-match really is
	What macros really are
	A nicer syntax for association lists

	Hygienic macros
	syntax-match vs syntax-rules
	syntax-match vs syntax-case
	syntax-match versus define-macro
	The hygiene problem

	Breaking hygiene
	datum->syntax revisited
	Playing with the lexical context
	Hygienic vs non-hygienic macro systems

	Comparing identifiers
	symbol-identifier=?
	bound-identifier=?
	free-identifier=?
	Literal identifiers and auxiliary syntax

	Indices and tables

