Astronomy and the Universe

Goals:

- To understand the methods scientists use to study astrophysical problems.
- To understand how studying the stars, and galaxies tells us about how the universe was created.
- To use angles to measure size and distance.

Scientific method

- Foundations of modern astronomy are built on the laws of physics.
- With only one view of the universe we must assume that these laws hold everywhere (we cannot experiment).
- Scientific method is built on observation, logic and skepticism.

Scientific Method

- Hypothesis vs theory
 - Common usage hypothesis = theory
 - In science theory = law.
 - Theory provides understanding of facts.
- Developing new theories
 - We rely on new tools, techniques and data.
 - We can now study objects from the xrays through to radio waves.
 - Each probe different physical aspects
 - Combined they can provide theories for how the universe formed and evolves.

Studying the stars

- We have only one experiment
 - Our own Galaxy contains hundreds of billions of stars. All with different ages, compositions and histories.
 - By studying the statistical and physical properties we can learn how they form, age and die.
- Our own sun will eventually die
 - Hydrogen is converted to Helium releasing energy (nuclear fusion - e.g. nuclear bombs).
 - $T_{\text{surface}} = 5500 \, {}^{\circ}\text{C} \, (10,000 \, \text{F})$
 - $T_{center} = 1.5 \times 10^6 \, {}_{0}C$
 - Diameter = $1.39 \times 10^6 \text{ km}$
 - Eventually the hydrogen will be used up and the sun will begin to die.

Observing Galaxies

- Stars are not formed in isolation
 - Grouped in galaxies
 - − >100 billion stars/galaxy
 - − >100s millions of galaxies
- Galaxies can be observed to great distances.
 - Most distant galaxies are at redshifts
 5 (70,000,000,000 light years away).
 - The distribution of galaxies tells us about how they were formed and how old is the Universe (15 billion years).
- Fascinating new objects
 - Quasars (quasi-stellar objects) are star-like but radiate with the energy of >100 galaxies.
 - Even more energetic sources
 (Gamma-ray bursters).

Angles in Astronomy

- We cant measure linear size
 - Stars and galaxies appear as if on the surface of a sphere.
 - Angles measure the apparent separation and sizes of objects.
- Definitions
 - There are 360° (degrees) in a circle
 - $1^{\circ} = 60$ arcminutes = 60°
 - 1' = 60 arcseconds = 60"
 - Alternatively in radians
 - $360^{\circ} = 2\pi \text{ radians}$
 - 1 radian = 57.296 degrees
- Rules of "thumb"
 - Size of the moon = 0.5°
 - Tip of your thumb (arms length) 4°
 - Ursa Major (big dipper) $\alpha \beta = 5^{\circ}$

Small Angle Approximation

- Example 1: Space Telescope
 - How far could the space telescope see a dime (1.5cm) ?
 - The telescope can resolve objects 0.1 arcsecs in size

1.5cm =
$$\frac{0.1 \operatorname{arcsec} x d}{206265}$$

distance = 3093975cm = 31 km (20 miles)

- Example 2: Man on the moon
 - How big an angle would a man on the moon project.
 - A basketball player 2m tall.

$$\alpha = \frac{206265 \times 2m}{384,000,000m}$$

 α = 0.00107 arcsec

- Much smaller than we can resolve
- How well does your eye resolve?

Powers of Ten and Exponents

- Astronomy is a subject of extremes
 - we study the largest objects in the Universe (galaxies and clusters).
 - we study the smallest objects (atoms and X-ray wavelengths).
- Scientific Notation
 - Large Numbers

$$10^{0} = 1 \Rightarrow 1$$

$$10^{1} = 10 \Rightarrow 10$$

$$10^{2} = 100 \Rightarrow 10x10$$

$$10^{3} = 1000 \Rightarrow 10x10x10$$

- Small numbers

$$10^{0} = 1 \Rightarrow 1$$

$$10^{-1} = 0.1 \Rightarrow \frac{1}{10}$$

$$10^{-2} = 0.01 \Rightarrow \frac{1}{10 \times 10}$$

$$10^{-3} = 0.001 \Rightarrow \frac{1}{10 \times 10 \times 10}$$

Powers of Ten and Exponents

- Examples:
 - Distance to the moon
 - 384,000,000m = 3.84x 10^8 m
 - Diameter of a hydrogen atom
 - 1.1x10⁻¹⁰m
- Arithmetic with exponents
 - Multiplying numbers = add exponents
 - $100 \times 1000 = 10^2 \times 10^3 = 10^5$
 - Dividing by 10ⁿ multiplying by 10⁻ⁿ

$$10^{-1} = \frac{1}{10}$$
$$10^{-n} = \frac{1}{10^{n}}$$

Exponents and numbers can be treated separately

$$\frac{1.3x10^2 \times 2.5x10^4}{1.4x10^3} = \frac{1.3x2.5}{1.4} \times 10^2 \times 10^4 \times 10^{-3}$$
$$= 2.32\times10^3$$

Astronomical Distances

- Many units of distance, mass, time
 - Standard system is SI (Systeme International)

	S.I.	cgs	Imperial
Length	m	cm	ft
Mass	kg	gm	lb
Time	S	S	S
Temperature	\mathbf{K}	K	${f F}$

- T(Kelvins) = T(Celsius) + 273.15
- Combing exponents and SI
 - exponents can be included with these measures.

$$10^{-9} = \text{nano} = \text{n}$$
 $10^{-6} = \text{micro} = \mu$
 $10^{-3} = \text{milli} = \text{m}$
 $10^{-2} = \text{centi} = \text{c}$
 $10^{+3} = \text{kilo} = \text{k}$
 $10^{+6} = \text{mega} = \text{M}$

Astronomical Distances

- New measures of distance:
 - Astronomers create units of distance to suit the application.
 - 1 Astronomical Unit = Earth-Sun distance
 - $1AU = 1.496 \times 10^8 \text{ km} = 93 \text{ million miles}$
 - Distance from Sun to Jupiter $5.2 \text{ AU} = 7.779 \times 10^8 \text{ km}$
 - Distances to stars we calculate in light years (time it takes light to travel from point A to point B).
 - Light travels at 3.0×10^5 km/s (180,000 miles/hour).
 - $1 \text{ ly} = 9.46 \times 10^{12} \text{ km} = 63,240 \text{ AU}$
 - Light takes 8.3 minutes to reach us from the sun
 - Light Year is a measure of distance **NOT** time.

Astronomical Distances

Scales of the Universe

Our Solar System

Pittsburgh to California = 0.02 light second

Earth to Moon = 1.3 light seconds

Earth to Sun = 8.3 light minutes

Earth to Jupiter (closest approach) = 35 light minutes

Earth to Pluto = 4 light hours

Distance from the Sun

Mercury = 0.39 A.U. Venus = 0.72 A.U. Earth = 1.0 A.U. Jupiter = 5.2 A.U. Pluto = 40 A.U.

Our Milky Way Galaxy

Sun to Nearest Star (Proxima Centauri) =4.2 ly Sun to the Distant Edge of our Galaxy = 1×10^5 ly The Milky Way to most distant known quasar = 1×10^{10} ly

Parsecs: Another Measure

- Measuring large distances
 - Usually the distances to stars and galaxies are expressed in "parsecs"
 - Imagine looking at the sun from a distant star. The Sun would appear to be separated from the Sun by a small angle. The further away we are from the Sun the smaller the angle.
 - When the angle is 1 arcsec the distance of the star is <u>defined</u> to be one parsec
- The small angle approximation

$$D = \frac{\alpha d}{206265} \implies d = \frac{206265 \times 1 \text{ AU}}{1 \text{ arcsec}} = 1 \text{pc}$$

$$d = 206265 \text{ AU}$$

$$d = 3.09 \times 10^{13} \text{ km} = 3.26 \text{ ly}$$

very large distances we use kilo (10³)
 and Mega (10⁶) parsecs. The center of our Galaxy is 8 kpc away.