
The Earth’s orbit and an exoplanetary orbit 
You may find it useful to refer to your fan cart program for the basic structure of your new program, but it is simpler 
and clearer to start a new program rather than trying to modify the fan cart program. The main difference is that the net 
force on the fan cart was constant, but the gravitational force can vary in both magnitude and direction at different 
locations.  

1 Creating the objects  
Actual data for the Sun and Earth may be found on the inside back cover of the textbook. We’ll make the radii of the 
Earth and Sun much bigger than they really are in order to be able to see them in the vast reaches of space! Place the 
Earth at its normal distance from the Sun, to the right of the Sun (along the x axis):  

from visual import * 
Sun = sphere(pos=vector(0,0,0), radius=1e10, color=color.yellow) 
Earth = sphere(pos=vector(1.5e11,0,0), radius=5e9, color=color.cyan) 
scene.autoscale = 0 

What is that last statement? Normally, VPython automatically zooms out if the scene gets bigger and zooms in if 
the scene gets smaller, so that you can always see the entire scene. The statement scene.autoscale = 0 says “turn 
off autoscaling for this scene”. Having autoscaling off makes it easier to view some of the orbits you are going to 
display.  

• Run the program to see the Sun and Earth

 
2 Giving the objects physical attributes  
In addition to geometrical attributes such as pos and radius, you can give objects physical attributes such as mass. 
Give the Sun and Earth the correct masses (see inside back cover of textbook). Also, define the gravitational 
constant G: 

G = ? 
Sun.m = ? 
Earth.m = ? 
 
3 Specifying initial conditions  
You’ve already specified the initial positions of the Sun and Earth. You also need to specify their initial momenta. 
Because it has such huge mass, we will assume the Sun hardly moves, and its velocity is initially zero (actually, it 
is drifting through space). Suppose the Earth is initially headed in the +ydirection with speed 2e4 m/s. Specify the 
initial momenta, as vectors. Also create a curve object to use to show the trajectory.  

Sun.p = ? 
Earth.p = ? 
Earth.trail = curve(color=Earth.color) 
 

Also choose a value for ∆t, the time interval you will use in updating momentum and position. The criteria are that 
∆t should be small enough that neither the force nor the velocity are changing very much (so that the updates are 
accurate), yet ∆t should be big enough that you’re not waiting forever for the computer to calculate a huge number 
of updates. Think about what you know about how long it takes the Earth to make a complete circular orbit of the 
Sun, and the criteria just mentioned, and choose a reasonable value for ∆t. Also, set a clock time to 0 to be able to 
time how long an orbit takes. 
 
deltat = ? 
t = 0



4 The while loop  
Again thinking about what you know about how long it takes the Earth to go around the Sun, 
choose a suitable stopping time for your while loop:  

while t < ?: 

Inside your while loop you need to do the following:  

• Calculate the gravitational force acting on the Earth.  
• Update the momentum of the Earth.  
• Update the position of the Earth.  
• Append positions to the curve object, to leave a trail: Earth.trail.append(pos=Earth.pos).  
• Update the time t.  
 
In your calculations, use the position of the Sun in the form Sun.pos rather than assuming it is always at the origin. 
This will make it easier to write a binary star program later, when both stars will move.  

 
 
• Run the program.  
• If it runs too fast, slow it down by using a rate statement, such as rate(300).  
• If it runs too slowly, increase ∆t.  
• Adjust the stopping time so that the Earth makes several complete orbits.  
 
5 Accuracy  
If you use a very large ∆t, the calculation is inaccurate, because during that large time interval the force 
changes a lot, making the momentum update inaccurate, and the momentum changes a lot, making the 
position update inaccurate. On the other hand, if you use a very small ∆tfor high accuracy, the program 
runs very slowly. In computational science, there is a trade-off between accuracy and speed.  

How can you tell whether an orbit is accurate? There’s a simple test: Make ∆tsmaller and see whether 
the motion changes. That is, see whether the orbit changes shape. (Obviously the program will run 
more slowly.)  

• Experiment with your value for ∆t, to find a good compromise between accuracy and speed. Cut the step size 
(∆t) and see whether the motion changes or not. Let the Earth go around the Sun five times in this test.  
• To see the effects of ∆t being too large, increase ∆t until the motion is different than it is with small ∆t.  
• In your notes, record the (approximate) biggest value of ∆t you can use and still get accurate motion in five 
trips around the Sun. You will be asked for this value when you turn in your program.  
• Your instructor will ask you to demonstrate an accurate orbit and a deliberately inaccurate orbit.  
 
CHECKPOINT 1: Make sure your program does the same thing as the others at your table. 

 
6 Visualizing the momentum vector with an arrow  
Next you will visualize the Earth’s momentum by creating an arrow before the while loop and updating it 
inside the loop. You need to know the approximate magnitude of the momentum in order to be able to scale 
the arrow to fit into the scene, so inside the loop, print the momentum vector:  

print “p=”, Earth.p 

As an example, suppose the magnitude of the momentum were about 1e31kg·m/s, and you want to scale 
down to 1e11 m. What would you need as a momentum scale factor pscale in this case? You would need a 
factor pscale that is approximately 1e11/1e31, so that if you multiply pscale times a momentum whose 
magnitude is about 1e31 kg·m/s, you get a length of about 1e31*(1e11/1e31) = 1e11. 



  

Or suppose that the magnitude of the momentum were 100 kg·m/s; then you would need pscale to be  

about 1e11/100, so that if you multiply pscale times a momentum whose magnitude is about 100 kg·m/s, 
you get a length of about 100*(1e11/100) = 1e11.  

 
Take a look at your print statement to see what is your specific case, in order to decide on the necessary scale factor 
for momentum.  

Before the while loop, insert these statements:

pscale = ? 
parr = arrow(color=color.red) 
 

The last statement creates an arrow object with default position and axis attributes. You will set 
these attributes inside the loop.  

• Comment out your print statement, which slows down orbit plotting.  
• Inside your loop, update the pos attribute of the parr arrow object to be on the Earth, and update its axis 

attribute to represent the current vector value of the momentum of the Earth (multipled by pscale).  
• Run the program. Use a rate statement, or a small time interval (∆t) to slow the orbit enough to be able to see 

clearly the behavior of the momentum vector. You may have to adjust the scale factor once you have seen the 
full orbit. Questions your instructor will ask you at the next checkpoint:  

• For this elliptical orbit, what is the direction of the momentum vector? Tangential? Radial? Something 
else?  

• What happens to the momentum as it approaches the Sun? As it moves away from the Sun? Why? You 
should be able to explain this qualitatively in terms of the momentum principle.  

7 Visualizing the force vector with an arrow  
Using the same ideas you used to display the momentum as an arrow, display an arrow representing the 
force acting on the Earth.  
• Display the force acting on the Earth, as an arrow with its tail always on the Earth. Questions your 
instructor will ask you at the next checkpoint:  
• For this elliptical orbit, is the force vector always perpendicular to the momentum vector?  
• When is the gravitational force large? Small?  
 
8 Other orbits  
• Change the initial speed of the Earth to 3.5e4 m/s and see what kind of orbit you get. You will have to 
zoom out to see the whole orbit (since autoscaling is turned off). 

9 Circular orbits  
Set the initial conditions so as to get a circular orbit of our Earth around our Sun, to check that the 
program is working properly. Note that the initial speed of the Earth can be calculated from the distance it 
goes around the Sun in one year.  

• Give this initial speed to the Earth and see whether you get a circular orbit.  
• Change your loop to stop when t is the number of seconds in a year, and see whether in fact the Earth now 
takes one year to make one circular orbit.  
 
• Reflection: What kind of orbit do you get if the initial speed is too slow for a circular orbit? Too fast?  

CHECKPOINT 2: Make sure everyone at your table has similar output.  



10 Extra-solar planetary system  
Over the past decade or so, scientists have discovered about 200 planets orbiting about far distant stars. You 
will simulate this situation and perhaps begin to understand how these planets can be detected, even when they 
are too distant to be seen from Earth.  

• Change the mass of the “Earth” to be half the mass of our Sun.  
• Give the “Earth” the initial velocity that our actual Earth has, and give the Sun an initial momentum Sun.p 

= vector(0,0,0).  
• Before the loop, create a curve object for the Sun, Sun.trail = curve(color=Sun.color)  
• Turn autoscaling back on by commenting out the statement scene.autoscale = 0.  
• Inside your loop, comment out the arrow update statements.  
• Inside your loop, update the Sun’s momentum and position, and update its trail. To update the Sun’s 

momentum, think carefully before doing lots more calculations: they aren’t needed!  
• Run the program. What do you see?  
• If you don’t have complete orbits, increase the time in your while statement.  
• Experiment with other initial momenta for the Sun and “Earth”.  
• In particular, try this: give the Sun an initial momentum that is equal in magnitude but opposite in 

direction to the initial momentum of the “Earth”. What is special about the orbit you observe? What is the 
total initial momentum? What does the momentum principle predict for the total momentum later? Explain.  

 
CHECKPOINT 3: Make sure the whole table agrees on the output. 

 
11 Playing around  
What happens if you aim the objects straight away from each other? With large or small initial speeds?  

What happens if you aim the objects straight toward each other? (When the objects get very close, the force changes 
rapidly with distance, so the calculations become increasingly inaccurate and the whole thing may seem to blow up, 
which is not what would actually happen.)  

Our Sun is not actually stationary but is moving in a giant orbit around the center of our Milky Way galaxy 
(and the galaxy is moving toward the Andromeda galaxy.) Restore the Earth’s mass to its actual mass, and give it 
an initial velocity < 0, 0, 2e4 > m/s. Give the Sun an initial velocity < –100, 1000, 0 > m/s. Watch as the Earth 
orbits the moving Sun. What is the shape of the Earth’s curve?  

You might like to add a third star to your binary star and see what wild kinds of orbits you can achieve. The 
orbits for a binary star can only be straight lines, circles, ellipses, parabolas, or hyperbolas. But with three bodies 
orbiting each other the orbits can be very diverse and very complicated. Except for some very special cases (very 
specially chosen initial conditions), the “three-body” problem has been shown to have no analytical solution 
(that is, there is no math function that gives the form of the orbits), but it is easy to instruct a computer to carry out 
a numerical solution as you did for the binary star. A caution: Update all the momenta BEFORE updating all the 
positions. Otherwise the calculations of gravitational forces would mix positions corresponding to different 
times.  

You might like to model the Sun-Earth-Moon system, or the Solar System. A practical difficulty with 
visualizing the Sun-Earth-Moon system is that the Earth-Moon system is very small compared to the great 
distance to the Sun, so it’s just hard to see the details of the Moon’s motion. 

 
 


