
Introduction to VPython for E&M
This tutorial will guide you through the basics of programming in VPython

VPython is a programming language that allows you to easily make 3-D graphics and animations. We will use it
extensively in this course to model physical systems. First we will introduce how to create simple 3-D objects. Then
we will use VPython to explore vectors and vector operations in 3-D.

On the screen desktop there should be an icon called “VPython Starter” (icon with a snake). Click on the icon. This
starts IDLE, which is the editing environment for VPython.

1. Starting a program

• Enter the following line of code in the IDLE editor window

from visual import *

Every VPython program begins with this line. This line tells the program to use the 3D module (called “visual”).

Before we write any more, let’s save the program:
In the IDLE editor, from the “File” menu, select “Save.” Browse to a location where you can save the file, and
give it the name “vectors.py”. YOU MUST TYPE the “.py” file extension --IDLE will NOT automatically add
it.
2. Creating a sphere

• Now let’s tell VPython to make a sphere. On the next line, type:

sphere()

This line tells the computer to create a sphere object. Run the program by pressing F5 on the keyboard (fn-F5). Two
new windows appear in addition to the editing window. One of them is the 3-D graphics window, which now
contains a sphere.

3. The 3-D graphics scene
By default the sphere is at the center of the scene, and the “camera” (that is, your point of view) is looking directly at
the center.

• Hold down the option key and mouse button and move the mouse up and down to make the camera
move closer or farther away from the center of the scene.

• Hold down the apply key and mouse button alone and move the mouse to make the camera “revolve”
around the scene, while always looking at the center.

When you first run the program, the coordinate system has the positive x direction to the right, the positive y
direction pointing up, and the positive z direction coming out of the screen toward you. You can then rotate the
camera view to make these axes point in other directions.

4. The Python Shell window
The second new window that opened when you ran the program is the Python
Shell window. If you include lines in the program that tell the computer to print
text, the text will appear in this window.

• Use the mouse to make the Python Shell window smaller, and
move it to the lower part of the screen. Keep it open when you are
writing and running programs so you can easily spot error
messages, which appear in this window.

• Make your edit window small enough that you can see both the edit
window and the Python Shell window at all times.

• Do not expand the edit window to fill the whole screen. You will
lose important information if you do!

• To kill the program, close the graphics window. Do not close the
Python Shell window.

To see an example of an error message, let’s try making a spelling mistake:

• Change the first line of the program to the following:

from bisual import *

• Run the program.
Notice you get a message in red text in the Python Shell window. The message gives the filename, the line where the
error occurred, and a description of the error (in this case “ImportError: No module named bisual”).

• Correct the error in the first line.
Whenever your program fails to run properly, look for a red error message in the Python Shell window.

Even if you don’t understand the error message, it is important to be able to see it, in order to find out that there is an
error in your code. This helps you distinguish between a typing or coding mistake, and a program that runs correctly
but does something other than what you intended.

5. Attributes
Now let’s give the sphere a different position in space and a radius.

• Change the last line of the program to the following:

sphere(pos=vector(-5,2,-3), radius=0.40, color=color.red)

• Run the program.

The sphere-creation statement gives the sphere object three “attributes”:
1.) pos: the position vector of the center of the sphere, relative to the origin at the center of the screen
2.) radius: the sphere’s radius
3.) color: the sphere’s color. Color values are written as “color.xxx”, where xxx could be red, blue, green, cyan,
magenta, yellow, orange, black, or white.

• Change the last line to read:

sphere(pos=vector(2,4,0), radius=0.20, color=color.white)

Note the changes in the sphere’s position, radius, and color.

Experiment with different values for the attributes of the sphere. Try giving the sphere other position vectors. Try
giving it different values for “radius.” Run the program each time you make a change to see the results. When you
are done, reset the line to how it appears above (that is, pos=vector(2,4,0), and radius=0.20).

6. Autoscaling and units
VPython automatically “zooms” the camera in or out so that all objects appear in the window. Because of this
“autoscaling”, the numbers for the “pos” and “radius” could be in any consistent set of units, like meters,
centimeters, inches, etc. For example, this could represent a sphere with a radius 0.20 m and a position vector of < 2,
4, 0 > m. In this course we will always use SI units in our programs (“Systeme International”, the system of units
based on meters, kilograms, and seconds).

7. Creating a second object

• We can tell the program to create additional objects. Type the following on a new line, then run the
program:

sphere(pos=vector(-3,-1,0), radius=0.15, color=color.green)

You should now see the original white sphere and a new green sphere. In later exercises, the white sphere will
represent a baseball and the green sphere will represent a tennis ball. (The radii are exaggerated for visibility.)

8. Arrows
We often use arrow objects in VPython to depict vector quantities. We next add arrows to our programs.

• Type the following on a new line, then run the program:

arrow(pos=vector(2,-3,0), axis=vector(3,4,0), color=color.cyan)

This line tells VPython to create an arrow object with 3 attributes:
1.) pos: the position vector of the tail of the arrow. In this case, the tail of the arrow is at the position
< 2, -3 ,0 > m.
2.) axis: the components of the arrow vector; that is, the vector measured from the tail to the tip of the arrow. In this
case, the arrow vector is < 3, 4, 0 > m.
3.) color: the arrow’s color.

To demonstrate the difference between “pos” and “axis,” let’s make a second arrow with a different “pos” but same
“axis.”

• Type the following on a new line, then run the program:

arrow(pos=vector(3,2,0), axis=vector(3,4,0), color=color.red)

Note the red arrow starts at a different point than the cyan arrow, but has the same magnitude and direction. This is
because they have the same “axis,” but different values of “pos.”

Question: What position would you give a sphere so that it would appear at the tip of the red arrow?
Discuss this with your partners. Then check the answer at the end of this tutorial.

9. Scaling an arrow’s axis
Since the axis of an arrow is a vector, we can perform scalar multiplication on it.

• Modify the axis of the red arrow by changing the last line of the program to the following:

arrow(pos=vector(3,2,0), axis=-0.5*vector(3,4,0), color=color.red)

Run the program. The axis of the red arrow is now equal to -0.5 times the axis of the cyan arrow. This means that
the red arrow now points in the opposite direction of the cyan arrow and is half as long. Multiplying an axis vector
by a scalar will change the length of the arrow, because it changes the magnitude of the axis vector. The arrow will
point in the same direction if the scalar is positive, and in the opposite direction if the scalar is negative.

10. Comments (lines ignored by the computer)
For the next section, we will only need one arrow. Let’s make VPython ignore one of the “arrow” lines in the
program.

• Change the second to last line (the cyan arrow) to the following:

#arrow(pos=vector(2,-3,0), axis=vector(3,4,0), color=color.cyan)

Note the pound sign at the beginning of the line. The pound sign lets VPython know that anything after it is just a
comment, not actual instructions. The line will be skipped when the program is run.

• Run the program. There should now only be one arrow on the screen.

11. Arrows and position vectors
We can use arrows to represent position vectors and relative position vectors. Remember that a relative position
vector that starts at a position A and ends at a position B can be found by “final minus initial,” or B - A. Do the
following exercise:
We want to make an arrow represent the relative position vector of the tennis ball with respect to the baseball. That
is, the arrow’s tail should be at the position of the baseball (the white sphere), and the tip should be at the position of
the tennis ball (the green sphere).

• What would be the “pos” of this arrow, whose tail is on the baseball (the white sphere)?
• What would be the “axis” of this arrow, so that the tip is on the tennis ball (the green sphere)?
• Using these values of “pos” and “axis”, change the last line of the program to make the red arrow

point from the white baseball to the green tennis ball.
• Run the program.
• Self check: Examine the 3D display carefully. If the red arrow does not point from the white baseball

to the green tennis ball, correct your program.

12. Naming objects and using object attributes

• Now change the position of the tennis ball (the second, green sphere in the program)--imagine it now
has a z-component, so that the line would now be:

sphere(pos=vector(-3,-1,3.5), radius=0.15, color=color.green)

• Run the program.
• Note that the relative position arrow still points in its original direction. We want this arrow to

always point towards the tennis ball, no matter what position we give the tennis ball. To do this, we
will have to refer to the tennis ball’s position symbolically. But first, since there is more than one
sphere and we need to tell them apart, we need to give the objects names.

• Give names to the spheres by changing the “sphere” lines of the program to the following:

baseball = sphere(pos=vector(2,4,0), radius=0.20, color=color.white)
tennisball = sphere(pos=vector(-3,-1,3.5), radius=0.15, color=color.green)

We’ve now given names to the spheres. We can use these names later in the program to refer to each sphere
individually. Furthermore, we can specifically refer to the attributes of each object by writing, for example,
“tennisball.pos” to refer to the tennis ball’s position attribute, or “baseball.color” to refer to the baseball’s color
attribute. To see how this works, do the following exercise.

• Start a new line at the end of your program and type:

print tennisball.pos

• Run the program.
• Look at the text output window. The printed vector should be the same as the tennis ball’s position.

Let’s also give a name to the arrow.

• Edit the last line of the program (the red arrow) to the following, to give the arrow a name:

bt = arrow(pos=vector(3,2,0), axis=-0.5*vector(3,4,0), color=color.red)

Since we can refer to the attributes of objects symbolically, we want to write symbolic expressions for the “axis”
and “pos” of the arrow “bt”. The expressions should use general attribute names in symbolic form, like
“tennisball.pos” and “baseball.pos”, not specific numerical vector values such as vector(-3,-1,0). This way, if the
positions of the tennis ball or baseball are changed, the arrow will still point from baseball to tennis ball.

• In symbols (letters, not numbers), what should be the “pos” of the red arrow that points from the baseball to
the tennis ball? Make sure that your expression doesn’t contain any numbers.

• In symbols (letters, not numbers), what should be the “axis” of the red arrow that points from the baseball
to the tennis ball? (Remember that a relative position vector that starts at position A and ends at position B
can be found by “final minus initial,” or B - A.). Make sure that your expression doesn’t contain any
numbers.

• Change the last line of the program so that the arrow statement uses these symbolic expressions for “pos”
and “axis”.

• Run the program. Examine the 3D display closely to make sure that the red arrow still points from the
baseball to the tennis ball. If it doesn’t, correct your program, still using no numbers.

• Change the “pos” of the baseball to (-4, -2, 5). Change the “pos” of the tennis ball to (3, 1, -2). Run the
program. Examine the 3D display closely to make sure that the red arrow still points from the baseball to
the tennis ball. If it doesn’t, correct your program, still using no numbers.

13. Loops
Another programming concept we will use in the course is a loop. A loop is a set of instructions in a program that
are repeated over and over until some condition is met. There are several ways to create a loop, but usually in this
course we will use the “while” statement to make loops.

Let’s try using a loop to repeatedly add to a quantity and print out the current value of the quantity.

• Start a new line at the end of your program and type:

t = 0

This tells the program to create a variable called “t” and assign it the value of 0.
• On the next line, type:

while t<10:

• Press the “Enter” key. Notice that the cursor is now indented on the next line. (If it’s not indented,
check to see if you typed the colon at the end of the “while” line. If not, go back and add the colon,
then press “Enter” again.)

The “while” statement tells the computer to repeat certain instructions while a certain condition is true. The lines
that will be repeated are the ones that are indented after the “while” statement. In this case, the loop will continue as
long as the variable “t” is less than 10.

• On the next (indented) line, type:

t = t+0.5

In algebra, “t = t+0.5” would be an incorrect statement, but in VPython as in most programming languages, the
equals sign means something different than it does in algebra. In VPython, the equals sign is used for assignment,
not equality. That is, the line assigns the variable t a new value, which is the current value of t plus 0.5. This means
that the first time through the loop, the computer adds the current value of t, which is 0, to 0.5, giving 0.5, and then
assigns t this new value of 0.5. The next time through the loop, the computer again adds 0.5 to t, making t equal to
1.0, and so on.

• To show this, on the next line (still indented), type:

print t

The last four lines you typed should now look like this:

t = 0
while t<10:
 t = t+0.5
 print t

• Run the program.

In the text output window, you should see a list of numbers from 0.5 to 10.0 in increments of 0.5. The first number,
0.5, is the value of t after the first time through the loop. Before each execution of the loop, the computer compares
the current value of t to 10, and if it is less than 10, it executes the loop again. After the 20th time, the value of t is
now 10.0. When the computer goes back to the “while” statement for the next repetition, it finds the statement
“t<10” is now false, since 10.0 is not less than itself. Because the condition is false, the computer does not do any
more executions of the loop.

To go back to writing statements that are not repeated in a loop, simply unindent by pressing the “Backspace” key.

• Type the following on a new, unindented, line:

print "End of program"

Now the last five lines should look like this:

t = 0
while t<10:
 t = t+0.5
 print t
print "End of program"

• Run the program.
You’ll now see the sequence of numbers printed, followed by the text “End of program.” The line that prints this
text is not in the loop, so the text prints only after the loop is done executing.

14. A second loop

• At the end of the program, add a new loop. This loop should print out the value of angles in radians,
starting at 0 and ending at 2*pi, in steps of pi/5. ('pi' is already defined as a constant in VPython).
Use the name "theta" for the variable.

15. A new program (to be turned in in WebAssign):

• Start a new program by pulling down the File menu in IDLE and choosing New Window. The first
line of the program should be:

from visual import *

• Save your program, making sure to give it a name ending in '.py'.

16. Spheres at the corners of a cube

• Create 8 spheres, of any color, located at the corners of a cube. Make the spheres small enough, or
the cube large enough, that the spheres are separated by a distance at least 5 times as large as the
diameter of a single sphere (that is, the spheres should not be too close together).

• Create 4 arrows, placed tip to tail in such a way that they form a rectangle, with each vertex being
the center of one of the spheres at the corners of the cube. For example, the arrows could go around
one face of the cube, or they could form a rectangle that cuts diagonally through the cube.

• The arrows should be a color other than white.

17. A circle of spheres

• At the end of your program, write a loop to place 12 spheres in a circle surrounding the cube. To do
this, you will need a loop like the one you wrote in section 14. Instead of printing the value of the
angle, however, you will use the angle to position a sphere.

It will probably be easiest to place the spheres in either the xy plane, the yz plane, or the xz plane. Remember that in
this case only two of the coordinates vary. Also remember that the radius of the circle and the sine or cosine of the
angle are needed to determine the coordinates of each sphere.

In VPython, sin(θ) is written sin(theta), and cos(θ) is written cos(theta). Angles are in radians.

18. Turn in your program in WebAssign
There is a WebAssign assignment where you will turn in the program you just finished (cube of spheres, etc.). One
person from each group must upload the program.

Answer to question in tutorial:
The tip of the red arrow is located at pos + axis = < 3, 2, 0 > + < 3, 4, 0 > = < 6, 6, 0 >.

