Calculate arctan x from series expansion arctan x = (x / (1 + x²)) * (1 + ((2/3)*(x²/(1+x²))) + ((2/3)*(4/5)*(x²/(1+x²))² + ...) V0 x (Input), arctan x (Output) V1 x² V2 prod V3 sum (initally 1.) V4 factor V5 term V6 num (initially 0) V7 f (intiially 1.) V8 0 V9 scratch V10 1. V11 100000 V12 50000 V13 2. A set decimal places to +5 N003 1.0 N006 0 N007 1.0 N008 0 N010 1.0 N011 100000 N012 50000 N013 2.0 Scale input to add 5 decimal places for computation × L000 L011 S000 x² = x × x × L000 L000 > S001 prod = x / (x² + 1) + L001 L010 S004 / L000 < L004 S002' factor = term = x² / (x² + 1) / L001 < L004 S004' S005' (? num = num + 2 + L006 L013 S006 f = f * (num / (num + 1)) L006 L010 S009 / L006 < L009 S009' * L007 L009 > S007 sum = sum + (f * factor) L007 L004 > S009 + L003 L009 S003 factor = factor * term * L004 L005 > S004 Cycle if (f * factor) nonzero - L008 L009 ) arctan = prod * sum * L002 L003 > S000 Add rounding constant + L000 L012 S000 Scale to result, lopping off 5 guard digits ÷ L000 L011 S000' A set decimal places to -5