Calculate sin x from series expansion sin x = x - x^3÷3! + x^5÷5! - x^7÷7! + V0 x (Input), sin x (Output) V1 i V2 j V3 sign of term s V4 x² x2 V5 current term term V6 scratch V7 denominator fact V8 1 V9 0 V10 scratch V11 100000 V12 50000 A set decimal places to +5 N001 0 N002 2 N003 1 N007 1 N008 1 N009 0 N011 100000 N012 50000 Scale input to use 5 more digits for computation × L000 L011 S000 term = sum = x + L000 L001 S005 x2 = x × x × L000 L000 > S004 (? term = term × x2 × L005 L004 > S005 fact = fact × j L002 L007 S007 j = j + 1 + L002 L008 S002 fact = fact × j × L002 L007 S007 j = j + 1 + L002 L008 S002 s = 0 - s (flip sign) - L009 L003 S003 temp = term ÷ fact ÷ L005 L007 S010' temp2 = s × term × L003 L010 S006 sum = sum + temp + L006 L000 S000 Cycle if term nonzero - L009 L010 ) Add rounding constant + L000 L012 S000 Scale result ÷ L000 L011 S000' A set decimal places to -5