Things to know about super

Author: Michele Simionato
Date: August 2008

This document is the sum of three blog post appeared on Artima and converted into PDF form for
readers’ convenience:

e http://www.artima.com/weblogs/viewpost.jsp?thread=236275
e http://www.artima.com/weblogs/viewpost.jsp?thread=236278

e http://www.artima.com/weblogs/viewpost.jsp?thread=237121

Contents

Foreword

Introduction

There is no superclass in a MI world

Bound and unbound (super) methods

super and descriptors

The secrets of unbound super objects

The unbound syntax is a mess

Bugs of unbound super objects in earlier versions of Python
Appendix

Special attributes are special

super does not work with meta-attributes

Remember to use super consistently

Argument passing in cooperative methods can fool you

Conclusion: is there life beyond super?

http://www.artima.com/weblogs/viewpost.jsp?thread=236275
http://www.artima.com/weblogs/viewpost.jsp?thread=236278
http://www.artima.com/weblogs/viewpost.jsp?thread=237121

Foreword

I begun programming with Python in 2002, just after the release of Python 2.2. That release was a
major overhaul of the language: new-style classes were introduced, the way inheritance worked changed
and the builtin super was introduced. Therefore, you may correctly say that I have worked with super
right from the beginning; still, I never liked it and over the years I have discovered more and more of
its dark corners.

In 2004 T decided to write a comprehensive paper documenting super pitfalls and traps, with the
goal of publishing it on the Python web site, just as I had published my essay on multiple inheritance
and the Method Resolution Order. With time the paper grew longer and longer but I never had the
feeling that I had covered everything I needed to say: moreover I have a full time job, so I never had
the time to fully revise the paper as a whole. As a consequence, four years have passed and the paper
is still in draft status. This is a pity, since it documents issues that people encounter and that regularly
come out on the Python newsgroups and forums.

Keeping the draft sitting on my hard disk is doing a disservice to the community. Still, I lack to time
to finish it properly. To come out from the impasse, I decided to split the long paper in a series of short
blog posts, which I do have the time to review properly. Moreover people are free to post comments
and corrections in case I am making mistakes (speaking about super this is always possible). Once I
finish the series, I may integrate the corrections, put it together again and possibly publish it as whole
on the Python website. In other words, in order to finish the task, I am trying the strategies of divide
et conquer and release early, release often. We will see how it goes.

Introduction

super is a Python built-in, first introduced in Python 2.2 and slightly improved and fixed in later
versions, which is often misunderstood by the average Python programmer. One of the reasons for that
is the poor documentation of super: at the time of this writing (August 2008) the documentation is
incomplete and in some parts misleading and even wrong. For instance, the standard documentation
(even for the new 2.6 version http://docs.python.org/dev/library /functions.html#super) still says:

super (type[, object-or-typel)
Return the superclass of type. If the second argument is omitted the
super object returned is unbound. If the second argument is an object,
isinstance(obj, type) must be true. If the second argument is a type,
issubclass(type2, type) must be true. super() only works for new-style
classes.

[UPDATE: the final version of Python 2.6 has a better documentation for super, as a direct con-
sequence of this post ;)]. The first sentence is just plain wrong: super does not return the superclass.
There is no such a thing as the superclass in a Multiple Inheritance (MI) world. Also, the sentence about
unbound is misleading, since it may easily lead the programmer to think about bound and unbound
methods, whereas it has nothing to do with that concept. IMNSHO super is one of the most tricky
and surprising Python constructs, and we absolutely need a document to shed light on its secrets. The
present paper is a first step in this direction: it aims to tell you the truth about super. At least the
amount of truth I have discovered with my experimentations, which is certainly not the whole truth ;)

A fair warning is in order here: this document is aimed at expert Pythonistas. It assumes you
are familiar with ‘new style classes‘_ and the Method Resolution Order (MRO); moreover a good
understanding of descriptors would be extremely useful. Some parts also require good familiarity with
metaclasses. All in all, this paper is not for the faint of heart ;)

http://www.python.org/download/releases/2.3/mro/
http://docs.python.org/dev/library/functions.html#super
http://www.python.org/download/releases/2.3/mro/
http://users.rcn.com/python/download/Descriptor.htm
http://www.ibm.com/developerworks/library/l-pymeta.html

There is no superclass in a MI world

Readers familiar will single inheritance languages, such as Java or Smalltalk, will have a clear concept
of superclass in mind. This concept, however, has no useful meaning in Python or in other multiple
inheritance languages. I became convinced of this fact after a discussion with Bjorn Pettersen and Alex
Martelli on comp.lang.python in May 2003 (at that time I was mistakenly thinking that one could define
a superclass concept in Python). Counsider this example from that discussion:

+———— +
| T |
la = 0]
- +

/ \

/ \
+o————— + +o————— +
| A | | B |
| | | a=2|
+————— + +—————— +

\ /

\ /

+———— +
| C |
+———— +
instantiation
c

>>> class T(object):
a=0

>>> class A(T):
pass

>>> class B(T):
a =2

>>> class C(A,B):
pass

>>> ¢ = C()

What is the superclass of C? There are two direct superclasses (i.e. bases) of C: A and B. A comes
before B, so one would naturally think that the superclass of C is A. However, A inherits its attribute
a from T with value a=0: if super(C,c) was returning the superclass of C, then super(C,c) .a would
return 0. This is NOT what happens. Instead, super(C,c).a walks trought the method resolution
order of the class of ¢ (i.e. C) and retrieves the attribute from the first class above C which defines it.
In this example the MRO of Cis [C, A, B, T, object], so B is the first class above C which defines
a and super(C,c) .a correctly returns the value 2, not 0:

>>> super(C,c) .a
2

You may call A the superclass of C, but this is not a useful concept since the methods are resolved
by looking at the classes in the MRO of C, and not by looking at the classes in the MRO of A (which
in this case is [A,T, object] and does not contain B). The whole MRO is needed, not just the first
superclass.

So, using the word superclass in the standard docs is misleading and should be avoided altogether.

http://tinyurl.com/5ms8lk

Bound and unbound (super) methods

Having established that super cannot return the mythical superclass, we may ask ourselves what the
hell it is returning ;) The truth is that super returns proxy objects.

Informally speaking, a proxy is an object with the ability to dispatch to methods of other objects
via delegation. Technically, super is a class overriding the __getattribute__ method. Instances of
super are proxy objects providing access to the methods in the MRO. The dispatch is done in such a
way that

super(cls, instance-or-subclass).method(*args, **kw)

corresponds more or less to

right-method-in-the-MRO-applied-to(instance-or-subclass, *args, **kw)

There is a caveat at this point: the second argument can be an instance of the first argument, or a
subclass of it. In the first case we expect a bound method to be returned and in the second case and
unbound method to be returned. This is true in recent versions of Python: for instance, in this example

>>> class B(object):
def __repr__(self):

return "<instance of %s>" % self.__class name_

>>> class C(B):
pass

>>> class D(C):
pass

>>> d = D()

you get

>>> print super(C, d).__repr__
<bound method D.__repr__ of <instance of D>>

and

>>> print super(C, D).__repr
<unbound method D.__repr__>

However, if you are still using Python 2.2 (there are unlucky people forced to use old versions) your
should be aware that super had a bug and super(<class>, <subclass>).method returned a bound
method, not an unbound one:

>> print super(C, D).__repr__ # in Python 2.2
<bound method D.__repr__ of <class ’__main__.D’>>

That means that in Python 2.2 you get:

>> print super(C, D).__repr__() # in Python 2.2

<instance of type>

D, seen as an instance of the (meta)class type, is being passed as first argument to __repr__. This
has been fixed in Python 2.34, where you correctly get a TypeError:

>>> print super(C, D).__repr__() # the same as B.__repr__Q
Traceback (most recent call last):

TypeError: unbound method __repr__() must be called with D instance as first
argument (got nothing instead)

The point is subtle, but usually one does not see problems since typically super is invoked on
instances, not on subclasses, and in this case it works correctly in all Python versions:

>>> print super(C, d).__repr__Q
<instance of D>

When I was using Python 2.2, due to the bug just discussed, and due to the super docstring

>>> print super.__doc__
super (type) -> unbound super object
super (type, obj) -> bound super object; requires isinstance(obj, type)
super (type, type2) -> bound super object; requires issubclass(type2, type)
Typical use to call a cooperative superclass method:
class C(B):

def meth(self, arg):

super(C, self).meth(arg)

I got the impression that in order to get unbound methods I needed to use the unbound super
object. This is actually untrue. To understand how bound/unbound methods work we need to talk
about descriptors.

super and descriptors

Descriptors (more properly I should speak of the descriptor protocol) were introduced in Python 2.2 by
Guido van Rossum. Their primary motivation was technical, since they were needed to implement the
new-style object system. Descriptors were also used to introduce new standard concepts in Python, such
as classmethods, staticmethods and properties. Moreover, according to the traditional transparency
policy of Python, descriptors were exposed to the application programmer, giving him/her the freedom
to write custom descriptors. Any serious Python programmer should have a look at descriptors: luckily
they are now very well documented (which was not the case when I first studied them :-/) thanks to
the beautiful essay of Raimond Hettinger. You should read it before continuing this article, since it
explains all the details. However, for the sake of our discussion of super, it is enough to say that a
descriptor class is just a regular new-style class which implements a .__get__ method with signature
__get__(self, obj, objtyp=None). A descriptor object is just an instance of a descriptor class.

Descriptor objects are intended to be used as attributes (hence their complete name attribute de-
scriptors). Suppose that descr is a given descriptor object used as attribute of a given class C. Then
the syntax C.descr is actually interpreted by Python as a call to descr.__get__(None, C), whereas
the same syntax for an instance of C corresponds to a call to descr.__get__(c, type(c)).

Since the combination of descriptors and super is so tricky, the core developers got it wrong in
different versions of Python. For instance, in Python 2.2 the only way to get the unboud method
_repr__ is via the descriptor API:

>> super(C, d).__repr__.__get__(None, D) # Python 2.2
<unbound method D.__repr__>

You may check that it works correctly:

>> print _(d)
<instance of D>

In Python 2.3 one can get the unbond method by using the super(cls, subcls) syntax, but the
syntax super(C, d).__repr get__(None, D) also works; in Python 2.4+ instead the same syntax
returns a bound method, not an unbound one:

>>> super(C, d).__repr__.__get__(None, D) # in Python 2.4+
<bound method D.__repr__ of <instance of D>>

http://users.rcn.com/python/download/Descriptor.htm

The core developers changed the behavior again, making my life difficult while I was writing this
paper :-/ I cannot trace the history of the bugs of super here, but if you are using an old version
of Python and you find something weird with super, I advice you to have a look at the Python bug
tracker before thinking you are doing something wrong. In this case, to be correct, the change is not
in super, but in the descriptor implementation. In Python 2.2-2.3 you could get an unbound method
from a bound one as follows:

>> d.__repr__.__get__(None, D) # in Python 2.2-2.3
<unbound method D.__repr__>

In Python 2.4 that does not work anymore:

>>> d.__repr__.__get__(None, D) # in Python 2.4+
<bound method D.__repr__ of <instance of D>>

Still, you can get the unbound method by passing for the underlying function first:

>>> d.__repr__.im_func.__get__(None, D) # in Python 2.4+
<unbound method D.__repr__>

When working with super, virtually everybody uses the two-argument syntax super (type, object-or-type)
which returns a bound super object (bound to the second argument, an instance or a subclass of the
first argument). However, super also supports a single-argument syntax super (type) - fortunately
very little used - which returns an unbound super object. Here I argue that unbounds super objects are
a wart of the language and should be removed or deprecated (and Guido agrees).

The secrets of unbound super objects

Let me begin by clarifying a misconception about bound super objects and unbound super objects. From
the names, you may think that if super(C, c).meth returns a bound method then super(C).meth
returns an unbound method: however, this is a wrong expectation. Consider for instance the following
example:

>>> class Bl(object):
def f(self):

return 1
def __repr__(self):
return ’<instance of %s>’ % self.__class__.__name__

>>> class C1(B1): pass

The unbound super object super (C1) does not dispatch to the method of the superclass:

>>> super(C1).f
Traceback (most recent call last):

AttributeError: ’super’ object has no attribute ’f’

i.e. super(C1l) is not a shortcut for the bound super object super(C1, C1) which dispatches
properly:

>>> super(C1, C1).f
<unbound method C1.f>

Things are more tricky if you consider methods defined in super (remember that super is class
which defines a few methods, such as __new__, __init__, __repr__, __getattribute__ and __get__)

or special attributes inherited from object. In our example super(C1).__repr__ does not give an
error,

-

>>> print super(Cl).__repr__() # same as repr(super(C1))
<super: <class ’C1’>, NULL>

but it is not dispatching to the __repr__ method in the base class B1: instead, it is retrieving the
_repr__ method defined in super, i.e. it is giving something completely different.

Very tricky. You cannot use unbound super object to dispatch to the the upper methods in the
hierarchy. If you want to do that, you must use the two-argument syntax super(cls, cls), at least
in recent versions of Python. We said before that Python 2.2 is buggy in this respect, i.e. super(cls,
cls) returns a bound method instead of an unbound method:

>> print super(Cl, C1).__repr__ # buggy behavior in Python 2.2
<bound method C1l.__repr of <class ’__main__.C1’>>

Unbound super objects must be turned into bound objects in order to make them to dispatch
properly. That can be done via the descriptor protocol. For instance, I can convert super(C1) in a
super object bound to c1 in this way:

>>> ¢l = C10
>>> boundsuper = super(Cl).__get__(cl, C1) # this is the same as super(Cl, cl)

Now I can access the bound method c1.f in this way:

>>> print boundsuper.f
<bound method Cl1.f of <instance of C1>>

The unbound syntax is a mess

Having established that the unbound syntax does not return unbound methods one might ask what its
purpose is. The answer is that super (C) is intended to be used as an attribute in other classes. Then
the descriptor magic will automatically convert the unbound syntax in the bound syntax. For instance:

>>> class B(object):
e a=1

>>> class C(B):

e pass

>>> class D(C):

.. sup = super(C)
>>>d = DO

>>> d.sup.a
1

This works since d.sup.a calls super(C) . __get__(d,D) .a which is turned into super(C, d).aand
retrieves B.a.

There is a single use case for the single argument syntax of super that I am aware of, but I think it
gives more troubles than advantages. The use case is the implementation of autosuper made by Guido
on his essay about ‘new style classes‘_.

Duplicate explicit target name: “new style classes”.

The idea there is to use the unbound super objects as private attributes. For instance, in our example,
we could define the private attribute __sup in the class C as the unbound super object super(C):

>>> C._C__sup = super(C)

With this definition inside the methods the syntax self.__sup.meth can be used as an alternative
to super(C, self).meth. The advantage is that you avoid to repeat the name of the class in the calling
syntax, since that name is hidden in the mangling mechanism of private names. The creation of the
__sup attributes can be hidden in a metaclass and made automatic. So, all this seems to work: but
actually this not the case.

Things may wrong in various cases, for instance for classmethods, as in this example:

def test__super():
"These tests work for Python 2.2+"

class B(object):
def __repr__(self):
return ’<instance of %s>’ Y, self.__class
def meth(cls):
print "B.meth(%s)" % cls
meth = classmethod(meth) # I want this example to work in older Python

name_

class C(B):
def meth(cls):
print "C.meth(%s)" % cls
cls.__super.meth()
meth = classmethod(meth)

C._C__super = super(C)

class D(C):
pass

D._D__super = super(D)

d =DO

try:
d.meth()
except AttributeError, e:
print e
else:
raise RuntimeError(’I was expecting an AttributeError!’)

The test will print a message ’super’ object has no attribute ’meth’. The issue here is that
self.__sup.meth works but cls.__sup.meth does not, unless the __sup descriptor is defined at the
metaclass level.

So, using a __super unbound super object is not a robust solution (notice that everything would
work by substituting self.__super.meth() with super(C,self).meth() instead). In Python 3.0 all
this has been resolved in a much better way.

If it was me, I would just remove the single argument syntax of super, making it illegal. But this
would probably break someone code, so I don’t think it will ever happen in Python 2.X. I did ask on
the Python 3000 mailing list about removing unbound super objects (the title of the thread was let’s
get rid of unbound super) and this was Guido’s reply:

Thanks for proposing this -- I've been scratching my head wondering what the use of unbound
super() would be. :-) I'm fine with killing it -- perhaps someone can do a bit of research to
try and find out if there are any real-life uses (apart from various auto-super clones)? ---
Guido van Rossum

Unfortunaly as of now unbound super objects are still around in Python 3.0, but you should consider
them morally deprecated.

Bugs of unbound super objects in earlier versions of Python

The unbound form of super is pretty buggy in Python 2.2 and Python 2.3. For instance, it does not
play well with pydoc. Here is what happens with Python 2.3.4 (see also bug report 729103):

>>> class B(object): pass

>>> class C(B):
s=super (B)

>>> help(C)
Traceback (most recent call last):

. lots of stuff here

File "/usr/lib/python2.3/pydoc.py", line 1198, in docother
chop = maxlen - len(line)
TypeError: unsupported operand type(s) for -: ’type’ and ’int’

In Python 2.2 you get an AttributeError instead, but still help does not work.
Moreover, an incompatibility between the unbound form of super and doctest in Python 2.2 and
Python 2.3 was reported by Christian Tanzer (902628). If you run the following

class C(object):
pass

C.s = super(C)

if __name__ == ’__main__’:

import doctest, __main__; doctest.testmod(__main__)
you will get a

TypeError: Tester.run__test__: values in dict must be strings, functions or
classes; <super: <class ’C’>, NULL>

Both issues are not directly related to super: they are bugs with the inspect and doctest modules
not recognizing descriptors properly. Nevertheless, as usual, they are exposed by super which acts as
a magnet for subtle bugs. Of course, there may be other bugs I am not aware of; if you know of other
issues, just add a comment here.

Appendix

In this appendix I give some test code for people wanting to understand the current implementation of
super. Starting from Python 2.3+, super defines the following attributes:

>> vars(super) .keys ()
[’__thisclass__’,
’__new__’,

’__self_class__’,
’__self__’,

http://bugs.python.org/issue729103
http://bugs.python.org/issue902628

’__getattribute__’,
’__repr__’,
’__doc__",
’__init__7,

) __get__ :]

In particular super objects have attributes __thisclass
__self__ (the second argument passed to super or None) and __self_class
__self__ or None). You may check that the following assertions hold true:

(the first argument passed to super)
(the class of __self__,

def test_super():
"These tests work for Python 2.3+"

class B(object):

pass

class C(B):
pass

class D(C):
pass

d = DO

instance-bound syntax
bsup = super(C, d)
assert bsup.__thisclass__ is C

assert bsup.__self__ is d
assert bsup.__self_class__ is D

class-bound syntax

Bsup = super(C, D)

assert Bsup.__thisclass__ is C
assert Bsup.__self__ is D
assert Bsup.__self_class__ is D

unbound syntax
usup = super(C)
assert usup.__thisclass__ is C

assert usup.__self__ is None
assert usup.__self_class__ is None

The tricky point is the __self_class__ attribute, which is the class of __self__ only if __self__
is an instance of __thisclass__, otherwise __self_class__ coincides with __self__. Python 2.2
was buggy because it failed to make that distinction, so it could not distinguish bound and unbound
methods correctly.

Working with super is tricky, not only because of the quirks and bugs of super itself, but also
because you are likely to run into some gray area of the Python language itself. In particular, in
order to understand how super works, you need to understand really well how attribute lookup works,
including the tricky cases of special attributes and metaclass attributes. Moreover, even if you know
perfectly well how super works, interacting with a third party library using (or not using) super is still
non-obvious. At the end, I am led to believe that the problem is not super, but the whole concept of
multiple inheritance and cooperative methods in Python.

10

Special attributes are special

This issue came up at least three or four times in the Python newsgroup, and there are various inde-
pendent bug reports on sourceforge about it, you may face it too. Bjorn Pettersen was the first one
who pointed out the problem to me (see also bug report 729913): the issue is that

super (MyCls, self).__getitem__(5)

works, but not

super (MyCls, self) [5].

The problem is general to all special methods, not only to __getitem__ and it is a consequence of
the implementation of attribute lookup for special methods. Clear explanations of what is going on are
provided by Michael Hudson as a comment to the bug report: 789262 and by Raymond Hettinger as a
comment to the bug report 805304. Shortly put, this is not a problem of super per se, the problem is
that the special call x[5] (using __getitem__ as example) is converted to type(x) .__getitem__(x,5)
only if __getitem__ is explicitely defined in type(x). If type(x) does not define __getitem__ directly,
but only indirectly via delegation (i.e. overriding __getattribute__), then the second form works but
not the first one.

This restriction will likely stay in Python, so it has to be considered just a documentation bug, since
nowhere in the docs it is mentioned that special calling syntaxes (such as the [] call, the iter call,
the repr call, etc. etc.) are special and bypass __getattribute__. The advice is: just use the more
explicit form and everything will work.

super does not work with meta-attributes

Even when super is right, its behavior may be surprising, unless you are deeply familiar with the
intricacies of the Python object model. For instance, super does not play well with the __name__
attribute of classes, even if it works well for the __doc__ attribute and other regular class attributes.
Consider this example:

>>> class B(object):
"This is class B"

>>> class C(B):
pass

The special (class) attribute __doc__ is retrieved as you would expect:

>>> super(C, C).__doc__ == B.__doc__
True

On the other hand, the special attribute __name__ is not retrieved correctly:

>>> super(C, C).__name__ # one would expect it to be ’B’
Traceback (most recent call last):

File "<stdin>", line 1, in 7
AttributeError: ’super’ object has no attribute ’__name__’

The problem is that __name__ is not just a plain class attribute: it is actually a getset descriptor
defined on the metaclass type (try to run help(type.__dict__[’__name__’]) and you will see it for
yourself). More in general, super has problems with meta-attributes, i.e. class attributes of metaclasses.

Meta-attributes differs from regular attributes since they are not transmitted to the instances of the
instances. Consider this example:

class M(type):
"A metaclass with a class attribute ’a’."

11

http://bugs.python.org/issue729913
http://bugs.python.org/issue789262
http://bugs.python.org/issue805304

class B:
"An instance of M with a meta-attribute ’a’."
__metaclass__ =M

class C(B):

"An instance of M with the same meta-attribute ’a’"

if __name__ == "__main__":
print B.a, C.a # =>11
print super(C,C).a #=> attribute error

If you run this, you will get an attribute error. This is a case where super is doing the right thing,
since ’a’ is not inherited from B, but it comes directly from the metaclass, so ’a’ is not in the MRO of
C. A similar thing happens for the __name__ attribute (the fact that it is a descriptor and not a plain
attribute does not matter), so super is working correctly, but still it may seems surprising at first. You
can find the rationale for this behaviour in my second article with David Mertz; in the case of __name_
it is obvious though: you don’t want all of your objects to have a name, even if all your classes do.

There are certainly other bugs and pitfalls which I have not mentioned here because I think are
not worth mention, or because I have forgot them, or also because I am not aware of them all. So, be
careful when you use super, especially in earlier versions of Python.

Remember to use super consistently

Some years ago James Knight wrote an essay titled Super considered harmful where he points out a
few shortcomings of super and he makes an important recommendation: wuse super consistently, and
document that you use it, as it is part of the external interface for your class, like it or not. The issue
is that a developer inheriting from a hierarchy written by somebody else has to know if the hierarchy
uses super internally or not. For instance, consider this case, where the library author has used super
internally:

library_using_super

class A(object):
def __init__(self):
print "A",
super (A, self).__init__Q

class B(object):
def __init__(self):
print "B",
super (B, self).__init__Q)
If the application programmer knows that the library uses super internally, she will use super and

everything will work just fine; but it she does not know if the library uses super she may be tempted
tocall A.__init__ and B.__init__ directly, but this will end up in having B.__init__ called twice!

>>> from library_using_super import A, B

>>> class C(A, B):
def __init__(self):
print "C",
A.__init__(self)
B.__init__(self)

12

http://www-128.ibm.com/developerworks/linux/library/l-pymeta2
http://fuhm.net/super-harmful/

>>> ¢ = C(O
CABB

On the other hand, if the library does not uses super internally,

library_not_using_super

class A(object):
def __init__(self):
print "A",

class B(object):
def __init__(self):
print "B",

the application programmer cannot use super either, otherwise B.__init__ will not be called:

>>> from library_not_using_super import A, B

>>> class C(A,B):
def __init__(self):
print "C",
super(C, self).__init__Q)

>>> ¢ = C()
CA

So, if you use classes coming from a library in a multiple inheritance situation, you must know if the
classes were intended to be cooperative (using super) or not. Library author should always document
their usage of super.

Argument passing in cooperative methods can fool you

James Knight devolves a paragraph to the discussion of argument passing in cooperative methods.
Basically, if you want to be safe, all your cooperative methods should have a compatible signature.
There are various ways of getting a compatible signature, for instance you could accept everything
(i.e. your cooperative methods could have signature *args, #**kw) which is a bit too much for me, or
all of your methods could have exactly the same arguments. The issue comes when you have default
arguments, since your MRO can change if you change your hierarchy, and argument passing may break
down. Here is an example:

"An example of argument passing in cooperative methods"

class A(object):
def __init__(self):
print ’A’°
class B(A):
def __init__(self, a=None):
print ’B with a=%s’ % a
super (B, self).__init__(a)

class C(A):

13

def __init__(self, a):
print ’C with a=Ys’ % a
super(C, self).__init__()

class D(B, C):
def __init__(self):
print ’D’
super (D, self).__init__Q)

>>> from cooperation_ex import D
>>> d = DO

D

B with a=None

C with a=None

A

This works, but it is fragile (you see what will happen if you change D(B, C) with D(C, B)?)
and in general it is always difficult to figure out which arguments will be passed to each method and
in which order so it is best just to use the same arguments everywhere (or not to use cooperative
methods altogether, if you have no need for cooperation). There is no shortage of examples of trickiness
in multiple inheritance hierarchies; for instance I remember a post from comp.lang.python about the
fragility of super when changing the base class.

Also, beware of situations in which you have some old style classes mixing with new style classes:
the result may depend on the order of the base classes (see examples 2-2b and 2-3b in Super considered
harmful).

UPDATE: the introduction of Python 2.6 made the special methods __new__ and __init__ even
more brittle with respect to cooperative super calls.

Starting from Python 2.6 the special methods __new__ and __init__ of object do not take any
argument, whereas previously the had a generic signature, but all the arguments were ignored. That
means that it is very easy to get in trouble if your constructors take arguments. Here is an example:

class A(object):
def __init__(self, a):

super (A, self).__init__() # object.__init__ cannot take arguments

class B(object):
def __init__(self, a):
super (B, self).__init__() # object.__init__ cannot take arguments

class C(A, B):
def __init__(self, a):

super(C, self).__init__(a) # A.__init__ takes one argument

__init__(Q) will call
__ without arguments, resulting in a TypeError. In older Python you could avoid that by
passing a to the super calls, since object.__init__ could be called with any number of arguments.
This problem was recently pointed out by Menno Smits in his blog and there is no way to solve it
in Python 2.6, unless you change all of your classes to inherit from a custom Object class with an
_init__ accepting all kind of arguments, i.e. basically reverting back to the Python 2.5 situation.

As you see, this cannot work: when self is an instance of C, super (A, self).
B.__init

Conclusion: is there life beyond super?

In this series I have argued that super is tricky; I think nobody can dispute that. However the existence
of dark corners is not a compelling argument against a language construct: after all, they are rare and

14

http://tinyurl.com/3jqhx7
http://fuhm.net/super-harmful/
http://fuhm.net/super-harmful/
http://freshfoo.com/blog/object__init__takes_no_parameters

there is an easy solution to their obscurity, i.e. documenting them. This is what I have being doing
all along. On the other hand, one may wonder if all super warts aren’t hints of some serious problem
underlying. It may well be that the problem is not with super, nor with cooperative methods: the
problem may be with multiple inheritance itself.

I personally liked super, cooperative methods and multiple inheritance for a couple of years, then I
started working with Zope and my mind changed completely. Zope 2 did not use super at all but is a
mess anyway, so the problem is multiple inheritance itself. Inheritance makes your code heavily coupled
and difficult to follow (spaghetti inheritance). 1 have not found a real life problem yet that I could not
solve with single inheritance + composition/delegation in a better and more maintainable way than
using multiple inheritance. Nowadays I am very careful when using multiple inheritance.

People should be educated about the issues; moreover people should be aware that there are alter-
native to multiple inheritance in other languages. For instance Ruby uses mixins (they are a restricted
multiple inheritance without cooperative methods and with a well defined superclass, but they do not
solve the issue of name conflicts and the issue with the ordering of the mixin classes); recently some
people proposed the concepts of traits (restricted mixin where name conflicts must be solved explicitely
and the ordering of the mixins does not matter) which is interesting.

In CLOS multiple inheritance works better since (multi-)methods are defined outside classes and
call-next-method is well integrated in the language; it is simpler to track down the ancestors of a
single method than to wonder about the full class hierarchy. The language SML (which nobody except
academics use, but would deserve better recognition) goes boldly in the direction of favoring composition
over inheritance and uses functors to this aim.

Recently I have written a trilogy of papers for Stacktrace discussing why multiple inheritance and
mixins are a bad idea and suggesting alternatives. I plan to translate the series and to publish here in
the future. For the moment you can use the Google Translator. The series starts from here and it is a
recommended reading if you ever had troubles with mixins.

Docutils System Messages

Duplicate target name, cannot be used as a unique reference: “new style classes”.
Duplicate target name, cannot be used as a unique reference: “new style classes”.

15

http://www.iam.unibe.ch/~scg/Research/Traits/
http://stacktrace.it/articoli/2008/06/i-pericoli-della-programmazione-con-i-mixin1/

	Contents
	Foreword
	Introduction
	There is no superclass in a MI world
	Bound and unbound (super) methods
	super and descriptors
	The secrets of unbound super objects
	The unbound syntax is a mess
	Bugs of unbound super objects in earlier versions of Python
	Appendix
	Special attributes are special
	super does not work with meta-attributes
	Remember to use super consistently
	Argument passing in cooperative methods can fool you
	Conclusion: is there life beyond super?

