ECT, March 2003

THE MESON SPECTRUM

by

Norbert Ligterink

Department of Physics and Astronomy University of Pittburgh Pittsburgh

issues

I #

(roughly)

Quark Models Comparison

parameters	relativistic kinetic interaction	self– energy quark + meson loops	fixed spin structure S.S L.S	chiral symmetry T	results mesons baryons excited states	model
20	some kin.	meson	No	No	MBX	CQM (Capstick,)
7	point form	partly	partly	No	MBX	PS exchange (Plessas,)
4	yes (inst)	partly	partly	No	MBX	Instanton BSE (Metsch,)
2	yes	quark	yes	π	MX	Coulomb BCS (Swanson,)
2	yes	quark	sure(?)	No	MB(X)	Lattice (Morningstar,)
4	yes	quark	yes	π	M(BX)	SDE (Roberts,)

QCD in the Coulomb gauge

(Christ&Lee, Zwanziger, Swanson, Szczepaniak, Cotanch, ...)

- Separation of dynamics (massive gluons) and confining forces ("scalar" potential)
- Massive quarks through chiral symmetry breaking à la Bogoliubov-Valatin (minimizing the one-body energy).

• Perturbative expansion in massive quarks and gluons.

theory The potential

(Swanson and Szczepaniak)

Correlated VACUUM:

Vacuum energy to be minimized

dressing the potential

The result: — $q^2V(q)$ [GeV].

The result in configuration space: — V(R).

issues Why non-relativistic approach fails

$$E = \frac{3\mu}{m_q} + 2m_q - \alpha\sqrt{2\pi\mu} + \sigma\sqrt{\frac{\pi}{2\mu}}$$

where μ is the wave function scale, e.g., $\exp\{-r^2/(2\mu)\}$.

Bounded by either μ or m_q or $\sigma/\sqrt{\mu}$.

theory

The results: $-q^2V(q)$ [GeV] and -m(q) [MeV].

issues

BEYOND (what else, what next)

- More complicated vacuum content: ggg, g^4 , $q\bar{q}$, etc.
- Higher order vacuum diagrams. The transverse gluon?
- Short range interactions, spin-spin and renormalization (1S states)
- Coupling to decay channels: widths and shifts (data comparison?)
- Flavor mixing

issues

coupling between the continuum and the hadron determines the width

*width is proportional to the coupling to the decay state *shift depends on width, tail, threshold, and mass.

issues:

Calculation $2 \otimes 2 \text{ spin states, 4 cases } (J^{(PC)}):$ $J^{(-[J],[J])}: (Singlet) = \uparrow \downarrow + \downarrow \uparrow$ $J^{(-[J],-[J])}: (Triplet) = \uparrow \uparrow \otimes Y_{lm}$ $J^{([J],[J])}: (Triplet^{2}) = \uparrow \uparrow Y_{l'(m-1)} + \downarrow \downarrow Y_{l(m+1)}$

The last set corresponds the "S-D" mixing through tensor interaction.

Calculation **PURE STATES** $J^{-[J][J]} [^{1}J_{J}, J \ge 0]$: $K_{J}(p,k) = V_{J}(1 + \frac{m(p)}{E(p)} \frac{m(k)}{E(k)}) + \left(V_{J-1} \frac{J}{2J+1} + V_{J+1} \frac{J+1}{2J+1}\right) \frac{p}{E(p)} \frac{k}{E(k)}$ 0^{++} : $K(p,k) = V_{0} \frac{p}{E(p)} \frac{k}{E(k)} + V_{1}(1 + \frac{m(p)}{E(p)} \frac{m(k)}{E(k)})$

$$J^{-[J]-[J]} [^{3}J_{J}, J \ge 1]:$$

$$K_{J}(p,k) = V_{J}(1 + \frac{m(p)}{E(p)} \frac{m(k)}{E(k)}) + \left(V_{J-1} \frac{J+1}{2J+1} + V_{J+1} \frac{J}{2J+1}\right) \frac{p}{E(p)} \frac{k}{E(k)}$$

calculation **MIXED STATES** $J^{[J][J]} [^{3}(J-1)_{J}, ^{3}(J+1)_{J}, J \ge 1]:$

$$K_{11}(p,k) = V_J \frac{p}{E(p)} \frac{k}{E(k)} + \left(V_{J-1} \frac{J}{2J+1} + V_{J+1} \frac{J+1}{2J+1}\right) \left(1 + \frac{m(p)}{E(p)} \frac{m(k)}{E(k)}\right)$$

$$K_{22}(p,k) = V_J \frac{p}{E(p)} \frac{k}{E(k)} + \left(V_{J-1} \frac{J+1}{2J+1} + V_{J+1} \frac{J}{2J+1}\right) \left(1 + \frac{m(p)}{E(p)} \frac{m(k)}{E(k)}\right)$$

$$K_{12}(p,k) = \left(V_{J-1} - V_{J+1}\right) \frac{\sqrt{J(J+1)}}{2J+1} \left(\frac{m(p)}{E(p)} + \frac{m(k)}{E(k)}\right)$$

Resolving the implicit spin structure:

$$u_{s}^{\dagger}(\mathbf{p}+\mathbf{q}/2)u_{t}(\mathbf{p}-\mathbf{q}/2) = \frac{(E'+m')(E+m)+p^{2}-q^{2}/4}{\sqrt{4EE'(E'+m')(E+m)}} \delta_{st}$$
$$+ \frac{\chi_{s}^{*}i(\vec{p}\times\vec{q})\cdot\vec{\sigma}\chi_{t}}{2\sqrt{4EE'(E'+m')(E+m)}}$$

 $q \ll p \ll E$:

$$V \sim |u_s^{\dagger} u_t|^2 \sim \delta_{st} \left(1 - \frac{q^2}{8M^2} \right) + \frac{\chi_s^* i(\vec{p} \times \vec{q}) \cdot \vec{\sigma} \chi_t}{4M^2}$$

 $p \ll q \ll E$ (hard gluon):

$$V \sim |u_s^{\dagger} u_t|^2 \sim \delta_{st} \left(1 - \frac{5q^2}{8M^2} \right) + \frac{\chi_s^* i(\vec{p} \times \vec{q}) \cdot \vec{\sigma} \chi_t}{4M^2}$$

The radii $\sqrt{\langle r^2 \rangle}$ of the light mesons. (Through Gaussian Fit Fourier Transform.)

CONCLUSIONS

- Coulomb gauge: when a potential makes sense
- The chiral pion
- Full spectrum, singular approach, minimal parametric fitting
- Meson properties available
- Meson interaction and decay under investigation