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Nuclear Structure of 80Sr and 85Y

Valan Q Wood, Ph.D.

University of Pittsburgh, 2000

High-spin states in 80Sr and 85Y were investigated using the detector arrays

Gammasphere and Microball, at the 88-Inch Cyclotron at LBNL. 80Sr was populated

with the reaction 58Ni(29Si, �2pn)80Sr using a 128 MeV beam, and with the reaction

58Ni(29Si, �2pn)80Sr using a 130 MeV beam. 85Y was populated with the reaction

58Ni(31P, 4p)85Y using a 134 MeV beam. Data was analyzed using coincidence anal-

ysis, lifetime measurements for 80Sr, and angular distributions. New structures in

the expanded level schemes are reported, including a tentative superdeformed band

in 85Y. Results are discussed in terms of a Cranked Shell Model and compared to

theoretical cranked Woods-Saxon shell model calculations. Based on the comparison

between these calculations and the experimental results, shape evolution for both

isotopes are suggested. Band termination was investigated for 80Sr, but no evidence

for band termination was found.
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Chapter 1

INTRODUCTION

High spin spectroscopy is at the forefront of Nuclear Structure research. At

the outset of this thesis work, new state of the art instrumentation, namely Gamma-

sphere and Microball, have become available to study the behavior of nuclei at large

angular momenta. Gammasphere is an array of up to 110 compton suppressed Ge

detectors for  ray spectroscopy. Microball consists of 98 CsI detectors covering a

solid angle of nearly 4� and permitting to identify light charged particles like protons,

deuterons, and � particles, and to measure their energies and angles of emission. The

combination of these two instruments makes it possible to separate di�erent reaction

channels and to conduct high resolution  ray spectroscopy on each of these reaction

channels.

The theoretical motivation for these experiments was based on behavior of

rotational bands at high spins, including sudden changes of moments of inertia, shape

changes, and the occurrence of so-called super deformed states.

80Sr and 85Y were studied and are discussed in chapter 4. Band termination,

superdeformation, and shape evolution are primary topics. State of the art theoreti-

cal models are described in chapter 2, which lays out the theoretical framework used

1



2

in the analysis of the data. Chapter 3 describes the experimental methods and some

of the analysis techniques. The experimental setup is brie�y described in this thesis;

the instruments used belong to the National Facility �Gammasphere� and the ex-

periments were carried out at Lawrence Berkeley National Laboratory (LBNL). The

analysis techniques include coincidence analysis, lifetime measurements, and angular

distributions.



Chapter 2

THEORETICAL BACKGROUND

2.1 The Liquid Drop Model

The earliest model of nuclear structure proposed was the liquid drop model.

It still yields many useful insights, since there are a number of similarities between

a nucleus and a liquid drop. The density of nuclear matter is almost independent of

mass number. This indicates that nuclear matter is nearly incompressible. Otherwise

nuclear density would be larger for larger nuclei as the binding forces increase. The

total binding energy of a nucleus is approximately proportional to the number of

nucleons. This is analogous to the energy required to completely evaporate a liquid

drop. The surface tension of a liquid drop causes a correction to this relation because

the binding energy of the surface molecules is somewhat smaller than that of the

interior molecules. This is similar to the smaller binding energy per nucleon at the

surface of a nucleus.

The similarities between a nucleus and a liquid drop arise from the fact that

in both a nucleus and a liquid drop, the constituent particles have a strong repulsion

at close range but attract beyond that range. In a nucleus this comes from the form

3
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of the strong force. Between about 1 fm (10�15 m) and 2 fm there exists a minimum

in the potential of the strong force that holds nucleons at about that distance from

each other.

There is an important scale di�erence between a nucleus and a liquid drop.

The scales of the kinetic energy and interparticle distance lead to a signi�cant physical

di�erence between a nucleus and a liquid drop. The kinetic energy of a typical

molecule in a liquid may be around 0.025 eV. The corresponding de Broglie wavelength

is about 1:8�10�10 m. This is very much smaller than the distance between molecules.

A typical nucleon might have about 30 MeV of kinetic energy. The corresponding de

Broglie wavelength is about 3� 10�15 m, which is about the same as the internucleon

distance. Hence, in ordinary liquids, the motion of the constituents can be described

in classical terms and their positions can be well de�ned, compared to their mutual

distance, whereas in nuclei the motion is necessarily of quantum character, since the

uncertainty in the localization of the constituents is of the order of magnitude of their

distance.

We will now develop some useful ideas on binding energy and shape that

are suggested by the liquid drop model.

2.1.1 Semi-empirical Mass Formula

The semi-empirical mass formula, which describes the binding energies of

nuclei, was motivated by the liquid drop model. The nuclear binding energy B(N;Z)

can be de�ned in the following way

m(N;Z) =
1

c2
E(N;Z) = NMn + ZMp �

1

c2
B(N;Z) (2.1)
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where the nuclear mass m is a function of neutron number N and proton number Z

and NMn + ZMp is the total mass of the constituent nucleons. The binding energy

B(N;Z) can then be calculated from measured isotope masses. The semi-empirical

mass formula B(N;Z) is given below

B(N;Z) = avA� asA
2=3 � ac

Z2

A1=3
� aI

(N � Z)2

A
� �A�3=4 (2.2)

where A is the nuclear mass number, and a�, as, ac, aI , and � are adjusted for the

best �t to known nuclear masses. Values of these parameters are av = 15:677 MeV,

as = 18:56 MeV, ac = 0:717 MeV, aI = 28:1 MeV, and � = 34 MeV for odd-odd

nuclei, 0 for odd-even nuclei, and -34 MeV for even-even nuclei [1]. Figure 2.1 shows

experimental binding energies per nucleon for stable nuclei. The points indicate

data, and the smooth line is from the semi-empirical mass formula. Each term in

this formula has a de�nite physical interpretation. The term avA is proportional

to the number of nucleons, which is proportional to volume since nuclear matter

is incompressible. The term asA
2=3 is proportional to surface area and models the

surface tension energy. The term ac
Z2

A1=3 is the Coulomb repulsion energy. The term

aI
(N�Z)2

A
describes the energy contribution resulting from unequal numbers of protons

and neutrons so that if Z and N are equal, its contribution is zero. This term can be

thought of as an e�ect of the Pauli exclusion principle. The lowest states for each type

of nucleon are �lled �rst, so having unequal numbers of the two types of nucleons will

require that higher energy states be �lled. The last term describes pairing energy.
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Figure 2.1: Empirical speci�c binding energies (B/A) compared with the average

curve representing the semi-empirical mass formula. Deviations mark shell structure

e�ects. The nuclei are chosen along the line of �-stability while the inset shows N = Z
nuclei. [2]
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R(�; �)

�; �

Figure 2.2: A deformed nuclear surface described by a function R(�; �).

2.1.2 Deformation and Shape Parameterization

Like a liquid drop, a nucleus may also experience deformations and shape

changes. For a strongly deformed nucleus, the oscillations introduce small e�ects

compared to those of deformation. In the mass 80 region, rarely are nuclei found to be

spherical, so we will focus on permanent deformation without discussing oscillations.

So it is important to consider the shape of a nucleus in detail.

A deformed nuclear surface can be described by a function R(�; �) that gives

the distance from the center of mass to a point on the surface as shown in Fig. 2.2,

where � is the angle from the azimuthal axis and � is the angle about the azimuthal

axis. A general form for R(�; �) can be expressed as a sum of spherical harmonics

Y��:

R(�; �) = R0

2
41 +

1X
�=0

�X
�=��

���Y��(�; �)

3
5 ; (2.3)

where ��� and R0 de�ne the particular surface. This formula can be simpli�ed for

the speci�c purpose of describing the surface of a deformed nucleus. The � = 0 term

is not dependent on � or �: �00Y00(�; �) = �00=
p
4�. So expression (2.3) can be
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rearranged as:

R(�; �) = R0

 
1 +

�00p
4�

!2
41 +

1X
�=1

�X
�=��

���

1 + �00p
4�

Y��(�; �)

3
5 : (2.4)

A redundancy can be seen from this. The � = 0 term can be removed and R0 and ���

rede�ned by factors of
�
1 + �00p

4�

��1
. Alternatively, R0 can be chosen for a spherical

nucleus, and then for a deformed nucleus the value of a00 can be determined so that

the deformed nucleus and the spherical nucleus have the same volume. Keeping the

volume the same is physically important because of the incompressibility of nuclear

matter. These two methods produce identical surfaces, but the deformation parame-

ters are de�ned di�erently by the factor of
�
1 + �00p

4�

�
. For small deformations, terms

with � = 1 would correspond to a translation of the center of mass. Since R(�; �) is

de�ned in the center of mass reference frame, this would be a violation of conservation

of momentum, so terms with � = 1 must be zero. Finally, since R(�; �) is real and

Y �
�� = (�1)�Y��� we can conclude that

���� = (�1)����� (2.5)

so that the imaginary parts of eq. (2.4) add to zero.

The terms with � = 2 are the most signi�cant terms in describing the

deformation of a nucleus. The � = 0 and � = 1 terms have been discussed with

regards to volume conservation and translation respectively. Terms with � = 3 would

remove the re�ection symmetry, which would have an e�ect on the parities of observed

states. Such e�ects have been observed in experiments. Terms with � � 4 have much

smaller coe�cients than the � = 2 terms.
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R3

R1

R2

x3

x1

x2

Figure 2.3: The three principal axes R1, R2, and R3 of a general quadrupole deformed

nucleus.

For a quadrupole deformation (� = 2) there are �ve coe�cients: �22, �21,

�20, �2�1, and �2�2 which correspond to �ve degrees of freedom. Of these �ve degrees

of freedom, three describe the orientation. A rotational transformation from space

�xed axes (x,y,z) to body �xed axes (x1,x2,x3) can be performed so that the �ve

coe�cients are transformed into �ve new coe�cients a22, a21, a20, a2�1, and a2�2.

From eq. (2.5) we know that a�21 = �a2�1 and a22 = a2�2. A rotation chosen so

that the coe�cients a21 = a2�1 = 0 orients the principal axes of the nucleus along

the coordinate axes. The lengths of the principal axes can then be related to the

coe�cients a22 = a2�2 and a20. The following equation shows the relationship between

a22 and a20 in terms of the three principal axis R1, R2, and R3 as shown in Fig. 2.3:

a20 = R3�R0

R0

q
4�
5

a22 = R1�R2

R0

q
2�
15

(2.6)
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These two coe�cients are often parameterized by the Hill-Wheeler coordi-

nates (�; ) as

a20 = � cos ;

a22 = 1p
2
� sin :

(2.7)

In this way � =
q
2a222 + a220 describes the magnitude of the deformation and  =

tan�1
�p

2a22
a20

�
describes the deviation from axial symmetry. Note that if  = 0� then

a22 is zero, and the shape is symmetric about R3. For  = 60� the shape is symmetric

about R1. For  = �60� the shape is symmetric about R2. In the intervals between

these 60� points the shape is triaxial, so that the three principal axes have di�erent

lengths.

2.2 Shell Model

While the classical liquid drop model adequately describes some of the bulk

properties of a nucleus, the nucleus is a quantum liquid and should be treated quantum

mechanically. Constructing a Hamiltonian with a number of interacting particles

typical of most nuclei leads to a mesoscopic system: there are too many degrees of

freedom to solve exactly but too few to be treated statistically. Since the nucleus

is a quantum liquid, we can approximate the motion of the individual nucleons as

being independent of each other, and use a mean-�eld potential to approximate the

potential that one nucleon feels from all other nucleons. Residual interactions that

cannot be well approximated by a mean-�eld potential can be treated as corrections

to the mean-�eld potential.
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2.2.1 The Spherical Shell Model

Consider a nucleon in a spherically symmetric potential V (r) where the

Hamiltonian expressed in spherical coordinates is

H = �
�h2

2M

1

r

@2

@r2
r +

~l2(�; �)

2Mr2
+ V (r) (2.8)

where ~l(�; �) is the angular momentum operator such that

~l2 = ��h2
"

1

sin �

@

@�

 
sin �

@

@�

!
+

1

sin2 �

@2

@�2

#
: (2.9)

Each eigenfunction of this Hamiltonian can be split into a radial part and an angular

part. The radial part has principal quantum number n which corresponds to the

number of radial nodes. The angular part is the spherical harmonic Ylm(�; �) which

has quantum numbers l and m corresponding to the angular momentum of the state

and the projection of the angular momentum onto an axis.

For the mean-�eld potential of a nucleus an additional degeneracy exists due

to spin, since nucleons can have spin up or spin down. The spin degeneracy is split by

adding to the Hamiltonian a spin-orbit term proportional to ~l � ~s. With the splitting

of this degeneracy, the number of nucleons in each shell agrees with the observed

shell closure. Consider the operator ~j which is the sum of the angular momentum

and spin operator vectors ~j � ~l + ~s. Squaring both sides and solving for 2~l � ~s yields

2~l � ~s = ~j2 �~l2 � ~s2. Since ~l, ~j, and ~s commute with the Hamiltonian, 2~l � ~s will also

commute with the Hamiltonian. Then, expressing ~l and ~s in terms of the eigenvalues

2~l � ~s! [j(j + 1)� l(l + 1)� s(s+ 1)] : (2.10)
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Then, for s = �1
2

2h~l � ~si =

8>>><
>>>:
l for j = l + 1

2

�l � 1 for j = l � 1
2

: (2.11)

So the inclusion of the spin-orbit term in the Hamiltonian with negative value and

appropriate strength reproduces the observed energy splitting, decreasing the energy

for l + 1
2
states and increasing the energy for l � 1

2
states.

2.2.2 Nuclear Density

Since the strong force has an interaction range shorter than the nuclear

size, the mean-�eld potential should have a form similar to that of the nuclear den-

sity distribution. As mentioned, the nuclear density is relatively uniform inside the

nucleus. At the surface the density smoothly decreases from 0.17 nucleons/fm3 to

about one tenth of that over a range of about 2.5 fm. So the nuclear density can be

quantitatively described by the density function

�(r) = �0

�
1 + exp

�
r � R

a

���1

(2.12)

where �0 � 0:17 nucleons/fm3, R � 1:2A1=3 fm, and a � 0:57 fm.

2.2.3 Woods-Saxon Potential

The Woods-Saxon potential has radial dependence similar to that of the

nuclear density distribution. A disadvantage of using the Woods-Saxon potential

instead of a harmonic oscillator approximation is that the Hamiltonian with a Woods-

Saxon potential cannot be solved analytically. The Woods-Saxon potential is

VWS(r) = �V0
n
1 + e[r�R0]=a

o�1
: (2.13)
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Figure 2.4: Woods-Saxon potential.

Appropriate values for the parameters are: well depth V0 = 50 MeV, nuclear ra-

dius R0 = 1:2A1=3 fm, and surface thickness a = 0:5 fm. Dudek and Werner have

done a survey to determine (N , Z) dependent values for these parameters to repro-

duce ground state spins and parities [3, 4, 5]. A schematic plot of the Woods-Saxon

potential is shown in Fig. 2.4.

The Hamiltonian for the single-particle shell model must also include terms

for the spin-orbit potential and Coulomb repulsion.

HWS = T + VWS(r) + �
1

r

@VWS(r)

@r
~l � ~s+

1

2
(1 + �3)Vcoul(r): (2.14)

The spin-orbit strength � � �0:5fm2 is empirical, and �3 is the isospin. The Coulomb

potential is calculated classically assuming the charge distribution is the same as the

nuclear density with total charge equal to Z. For protons �3 = +1, for neutrons

�3 = �1 so the Coulomb term is zero for neutrons and

Vcoul =
e2

4��0

Z
�(~r0)d3r0

j~r � ~r0j
(2.15)

for protons where �(~r0) is given by eq. (2.12) but with �0 chosen so that the number

of protons is Z =
R
�(~r)d3r.
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2.2.4 Nilsson Deformed Potential Model

Calculating energy levels for deformed nuclei was a primary motivation for

the Nilsson model, so it introduces a Hamiltonian with an axially symmetric deformed

harmonic oscillator potential.

HNilsson = T + Vosc + C~l � ~s+D~l2 (2.16)

where T is the kinetic energy, Vosc =
M
2
[!2

?(x
2
1 + x22) + !2

3x
2
3] is an axially symmetric

harmonic oscillator potential, ~l �~s is the spin-orbit coupling term, and ~l2 is the angular

momentum term. The addition of the angular momentum term is to correct the

harmonic oscillator potential so that nucleons will behave similar as if they were in a

realistic nuclear potential. Nucleons with greater angular momentum are more likely

to be at a greater r, where a realistic nuclear potential is lower than the harmonic

oscillator potential. So a negative value of D in eq. (2.16) causes nucleons that are

more likely to be at greater r to experience a lower energy, similar to if the potential

was more like a Woods-Saxon potential. The purpose for doing this instead of using

the Woods-Saxon potential was so that this model could be solved analytically. The

Hamiltonian H can be written as follows: The harmonic oscillator can be related to

the shape parameters described in section 2.1.2. Since this model is symmetric about

the x3-axis, a22 / R1 � R2 = 0. From eq. (2.7) the triaxiality parameter  is zero.

We also �nd that � = a20 / !2
? � !2

0.

As soon as a deformation is given to the potential, the spherical symmetry

of the Hamiltonian is broken. The angular momentum operator ~l no longer commutes

with the Hamiltonian. Thus the energy eigenstates will have mixed orbital angular
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momentum l. So l will no longer be a good quantum number. Similarly, the energy

eigenstates will have mixed principal quantum number n, and n will no longer be a

good quantum number for the energy eigenstates. The shape is symmetric about the

x3-axis, so 
, the projection of the total angular momentum on the x3-axis, will be a

good quantum number. The shape is also symmetric by re�ection about the origin,

so parity will be a good quantum number. There is also a rotational symmetry, since

the Hamiltonian is invariant under R1(�), a rotation of � radians about the x1 axis.

This symmetry is associated with the quantum number � called signature, where

R1(�) � = e�i�J1 � = e�i�� �: (2.17)

Note that � provides the same result for the exponential if � is increased or decreased

by two. By convention we pick the four values of � = �1=2, 0, 1=2, 1 to denote

signature for the following spin sequences:

� = 0 : I = 0; 2; 4; ::: (2.18)

� = 1 : I = 1; 3; 5; ::: (2.19)

� = +1=2 : I = 1
2
; 5
2
; 9
2
; ::: (2.20)

� = �1=2 : I = 3
2
; 7
2
; 11

2
; ::: (2.21)

For an odd number particles, � can have � = +1=2 or �1=2. For an even number

particles, � can have � = 0 or 1.

A Nilsson diagram plots the energy levels for an axially symmetric quadrupole

deformed potential as a function of the deformation. A similar deformed energy level

diagram is shown in Fig. 2.5 which uses a deformed Woods-Saxon potential instead of
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Figure 2.5: Deformed energy level diagram for a Woods-Saxon potential. Energy is

indicated in units of MeV. States are labeled on the right by 
 and parity. Each state

is two-fold degenerate with signature states of � = +1=2 and � = �1=2. Underlined

numbers labeled in gaps indicate the number of states below the gap.
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the modi�ed oscillator. Because of the symmetries described above, the good quan-

tum numbers used to describe each energy level are 
, parity �, and signature �. In

the �gure, each state is labeled on the right by 
 and the parity of the state. Since

the energy is not dependent on the signature, there is a two-fold degeneracy: for each

energy there exists one state with � = +1
2
and one state with � = �1

2
. To aid in

counting levels, large gaps are labeled by the number of states that exist below the

gap.

2.3 Collective Motion

Consider a nucleus which gains angular momentum. This can happen through

two mechanisms. One is the aligning of the angular momentum from one or more

single-particle orbitals. The other is the coherent motion of many nucleons, referred

to as collective rotation. In order for a quantum system such as an atomic nucleus

to undergo collective rotation, it must be deformed in some way, because di�erent

orientations of a spherically symmetric nucleus are indistinguishable.

A quantum mechanical rotor has energy levels with energies

E =
�h2I(I + 1)

2=
(2.22)

where I(I + 1) is the eigenvalue of the angular momentum operator squared, ~I2, and

= is the moment of inertia of the rotor. For a quantum system made up of fermions,

I must take on integer (even number of fermions) or half-integer (odd number of

fermions) values. Many even-even nuclei exhibit strong decay sequences that emit

quadrupole radiation consistent with transitions between energy levels of the form of
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Figure 2.6: Idealized example of low spin decay sequence for an even-even nucleus.

The energy of each state is labeled on the left. The spin of each state is labeled on

the right. Decay transitions are indicated with arrows.

eq. (2.22) where I takes on values that di�er by two. Figure 2.6 shows a schematic level

scheme similar to what might be deduced from observed electromagnetic transitions.

The implication of this level scheme is that the nucleus undergoes collective motion

similar to a rotor. The moment of inertia can be determined from such a level scheme.

It is important to use a model that accommodates both collective and non-

collective mechanisms. In slow collective rotation, where the collective motion is much

slower than the motion of the constituent nucleons, the centrifugal and Coriolis forces

produce only a small perturbation on the intrinsic structure. For such slow collec-

tive rotation, the motion of the constituent nucleons and the collective rotation are

therefore essentially decoupled. The total angular momentum I can be thought of as

the sum of a collective angular momentum R and an intrinsic angular momentum as

shown in Fig. 2.7. In a quantum mechanical description, there can be no component

of collective angular momentum parallel to an axis of symmetry. So for an axially

symmetric nucleus, 
 = K (see Fig. 2.11).
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~I = Total angular momentum
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Figure 2.7: The total angular momentum ~I is the sum of the intrinsic angular mo-

mentum ~J and the collective angular momentum ~R. For a nucleus with an axis of

symmetry (here chosen as the x3 axis), the values 
 and K are the projection onto

the symmetry axis of the intrinsic and total angular momentum respectively.

2.4 Cranking Model

As the collective angular momentum increases, the centrifugal and Coriolis

forces a�ect the intrinsic states more and more. If the angular velocity of the collec-

tive rotation is not slow compared to the motion of the nucleons, then the cranking

model is needed to calculate the centrifugal and Coriolis corrections to the intrinsic

Hamiltonian.

Schrödinger's equation can be expressed in terms of the intrinsic Hamil-

tonian and wave function by applying a time dependent rotational operator R =

ei(~!�
~J)t=�h to the lab frame Hamiltonian and wave function:

Hlab

�
R�1R lab

�
= i�h

@ (R�1R lab)

@t

= i�h

2
4� i~! � ~J

�h
R�1 (R lab) +R�1@ (R lab)

@t

3
5

RHlabR
�1R lab = i�hR

2
4� i~! � ~J

�h
R�1 (R lab) +R�1@ (R lab)

@t

3
5 : (2.23)
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And since ~J commutes with R,

�
RHlabR

�1
�
(R lab) = ~! � ~J (R lab) + i�h

@ (R lab)

@t
: (2.24)

The Hamiltonian and wave function in the intrinsic reference frame are Hintr �

RHlabR
�1 and  intr � R lab respectively, and we have

�
Hintr � ~! � ~J

�
 intr = i�h

@ intr

@t
: (2.25)

Eq. (2.25) leads to the expression for the cranking Hamiltonian

H! = Hintr � ~! � ~J: (2.26)

The term ~! � ~J represents both the e�ect of the centrifugal and Coriolis interactions.

This result can also be found using a classical coordinate transformation instead of the

quantum mechanical approach shown above. The intrinsic Hamiltonian can be any

Hamiltonian to be expressed in the rotating frame. Our calculations use the single-

particle Woods-Saxon Hamiltonian to �nd the single-particle states in the intrinsic

frame.

By convention the rotation is chosen about the x1-axis so that the cranking

Hamiltonian is

H! = Hintr � !J1: (2.27)

Because H! is time independent, Schrödinger's equation with the cranking Hamilto-

nian can be solved as an eigenvalue problem. The energy eigenvalues for the cranking

Hamiltonian are the energies in the rotating frame, or the Routhian eigenvalues.

For comparison to experiment, it is necessary to make a rotation to the lab frame

since the cranking Hamiltonian represents the energy in the nuclear body-�xed frame,

whereas measurements are made in the lab frame.
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Figure 2.8: When cranking about the x1 axis (in the �gure, the x1 axis is coming out

of the page) with angular velocity !, the lab frame x, y, z, and intrinsic frame x1, x2,

x3 are related as shown.

2.4.1 Cranking About the Symmetry Axis

Is is straightforward to solve the Cranking Model for the case when the sym-

metry axis corresponds to the axis of rotation. This is because the Hamiltonian in the

cranking reference frame is identical to the Hamiltonian in the lab frame. Because

the Hamiltonian in the lab frame is stationary, the rotation is non-collective. Further-

more, since the Hamiltonian in the lab frame is also symmetric about the rotation

axis, x1, J1 commutes with the Hamiltonian. Therefore, using eq. (2.27) the Routhian

eigenvalues, e0i, can be expressed in terms of the intrinsic Hamiltonian eigenvalues ei,

angular momentum projection eigenvalues 
i, and the cranking frequency ! by

e0i = ei � !
i: (2.28)

Since 
i is a good quantum number (i.e. eigenvalue of J1), the relationship between

the cranking eigenvalues e0i and the cranking frequency ! is linear with slope 
i (see

Fig. 2.9). Note that the energy degeneracy between positive and negative values of


 is removed when the angular velocity ! is non-zero, and that the energy levels
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j =

Figure 2.9: Schematic plot of single particle Routhians as a function of ! for the case

of rotation around the symmetry axis.

for di�erent spin states can cross. This removal of spin degeneracy corresponds to a

removal of the signature degeneracy. The solid lines in Fig. 2.9 are � = +1=2 and the

dashed lines are � = �1=2 states.

The total energy of the system is the sum of the energies of occupied single

particle states, which can be expressed in terms of E, the eigenvalue of the intrinsic

Hamiltonian, the angular frequency !, and the total spin I1 about the x1-axis:

E 0 �
X
i

e0i =
X
i

(ei � !
i) = E � !I1 (2.29)

where the total spin about the x-axis is

I1 =
NX
i=1


i (2.30)

and is a constant value for a given con�guration.
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2.4.2 Cranking Perpendicular to the Symmetry Axis

The solution to the Cranking Model with the cranking axis perpendicular

to the symmetry axis is more complicated than the previous case. The intrinsic

Hamiltonian no longer commutes with J1, the component of the angular momentum

operator in the direction of the cranking axis x1. Thus the eigenstates of the cranking

Hamiltonian are not eigenstates of J1, so the set of 
i are no longer good quantum

numbers. In fact, the only operators left that commute with both the intrinsic Hamil-

tonian and the angular momentum J1 operators (and thus the total Hamiltonian),

are parity (re�ection about the origin) and signature (rotation about the x1 axis by

180�).

The formula for the total energy E 0 of the system has the form:

E 0 =
NX
i=1

e0i =
NX
i=1

(heii � !hJ1ii) = hEi � !hI1i (2.31)

where the angled brackets indicate the expectation value and heii = ei, from which

de0i
d!

= �hJ1ii (2.32)

can be derived. The di�erence here from the previous section is that now hJ1ii is not

equal to an eigenvalue of J1, so it varies with !, and the slopes of the single particle

Routhians are not constant.

2.5 Cranked Mean-Field Calculation with Pairing

It is necessary to correct the mean-�eld potential approximation for e�ects of

the residual interaction. The most important contribution to the residual interaction
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is well modeled by the pairing interaction, previously mentioned in section 2.1.1.

The Hamiltonian with pairing interaction can not be diagonalized exactly, but is

amenable to approximate treatment by BCS methods. This section describes the

approximations made and method used to treat the pairing correlations for a cranked

mean-�eld potential.

This method for solving the cranking Hamiltonian with pairing is applied

to the following many-body Hamiltonian:

H =
X
i;j

hijH0 � !xJxjjia
y
iaj �G

X
i;j

0
ayia

y
�ia�jaj: (2.33)

where H0 is the Woods-Saxon Hamiltonian in the intrinsic reference frame, and the

bra and ket vectors hij; jji represent the basis states, which are usually chosen as the

pre-calculated single-particle eigenstates of H0. The symbols ai and a
y
i represent the

nucleon destruction and creation operators of the single-particle basis states respec-

tively. The quantity hijH0 � !1J1jji is the one-body matrix element of the cranked

mean-�eld Hamiltonian. The second term in eq. (2.33) is the pairing interaction,

with strength G. The two-body operator ayia
y
�ia�jaj will be nonzero only when acting

on states that contain both jji and j�ji single-particle basis states. These states jji

and j�ji are the single-particle eigenstates of the intrinsic Hamiltonian which are time

reverses of each other. Thus the pairing term only pairs states that are the same

except for having antiparallel angular momentum. The
P0 is constrained to include

only one term for each pair of time reversed basis states.
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The introduction of the two-body operator renders the Hamiltonian unsolv-

able. We use a BCS technique which in e�ect uses a trial wave function

j�i =
Y
i

0
(ui + via

y
ia

y
�i
)j0i (2.34)

where ui and vi are constants to be determined. The occupation probability of state

jii is v2i = 1� u2i . The BCS state j�i does not have a de�nite number of particles.

The pairing interaction is simpli�ed by applying the replacement

ayia
y
�ia�jaj �!

1

2
h�ja�jajj�i(a

y
ia

y
�i + a�iai): (2.35)

The resulting Hamiltonian

HBCS =
X
i;j

hijH0 � !1J1jjia
y
iaj �

1

2
G
X
j

ha�jaji
X
i

(ayia
y
�i
+ a�iai) (2.36)

can be diagonalized by introducing quasiparticles via a Bogoliubov transformation.

Its ground state j�i is the quasiparticle vacuum. Like every BCS state vector, j�i

corresponds to an inde�nite number of particles. This is reasonable, because the

particle number operator N does not commute with the operator
P

i<(a
y
ia

y
�i
+ a�iai)

in eq. (2.36). We ensure that j�i has the correct average number of particles by

introducing a Lagrange multiplier �, and replacing the Hamiltonian H with H��N .

The optimal values of ui and vi, and hence j�i, depend on �. Solutions are then found

such that the expectation value h�jN j�i is equal to the actual number of particles

in the system. This involves iterative adjustment of �, which can then be identi�ed

as the Fermi energy of the system. Since the Schrödinger equation also contains the

quantity � =
P

jh�ja�jajj�i which depends on the unknown state j�i, an initial value

of � is estimated and the value of � is adjusted along with � during each iteration.
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2.6 Strutinsky Shell Correction

The liquid drop model and the shell model provide two di�erent values for

the energy of a nucleus. The method of Strutinsky shell correction is to reconcile

these two models by expressing the nuclear energy Etot as the sum of a liquid drop

model part ELD and a shell correction part Esh

Etot = ELD + Esh: (2.37)

The shell model accurately describes the small �uctuations of the nuclear energy with

respect to neutron and proton numbers N and Z. So Esh is derived from the shell

model energy with a smooth part subtracted so that Esh averages to zero over a

range of atomic mass number. It is appropriate to choose ELD as the liquid drop

model because it accurately describes the trend of the nuclear energy with atomic

mass numbers N and Z. The resulting Etot is then the sum of a smooth part ELD

and a �uctuating part Esh.

We use Nilsson and Ragnarsson's method [2] to obtain Esh. It is found from

the sum of a proton shell energy Esh(prot) and a neutron shell energy Esh(neutr).

Both Esh(prot) and Esh(neutr) are similarly found from the shell energy minus a

smoothed part. Figure 2.10 shows a plot of estair(N), the shell model single-particle

energy levels of neutrons in a spherical Woods-Saxon potential appropriate for N =

126 and Z = 82, and �e(N), the corresponding smoothed part. The neutron shell part

for 208Pb is then

Esh(neutr) =
126X
N=1

estair(N)�
Z 126

0
�e(N)dN: (2.38)
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Figure 2.10: Example of smoothed energy levels used for Strutinsky smoothing. Single

particle energy levels for a spherical 208Pb nucleus estair(N) are shown with dots and

lines connecting the dots in a staircase pattern. The corresponding smoothed energy

level function �e(N) is also shown.

For an additional neutron, the single-particle states will not change signi�cantly, but

the addition of the 127th neutron just above the shell will increase the energy more

than the smooth part. So Esh(neutr) will retain the desired shell �uctuations, but

averages to zero over N
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Figure 2.11: Components of the angular momentum shown for the case of rotation

about the x axis, where the x axis is perpedicular to the symmetry or x3 axis.

2.7 Comparing Theory to Experiment

It has become usual to compare theory to experiment at the level of the

Routhian to get information about con�gurations, angular momentum, etc.

Classically, one can consider a model of a rotor free to rotate with any one

of its principal axes aligned along the space �xed x axis, such as is shown in Fig. 2.11.

It will have a HamiltonianH = H(Ix) where Ix is the canonical momentum conjugate

to the angle of rotation �. So Hamilton's equations of motion are:

_� =
@H

@Ix
=

dE

dIx
; _Ix = �

@H

@�
= 0: (2.39)

The �rst of these gives

! =
dE

dIx
(2.40)

which also makes sense in quantum mechanics and enables us to de�ne the angular

velocity !.

Since the angular momentum I is measured, but Ix (the component of the

angular momentum along the cranking axis) will relate most quantities, we relate I
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and Ix with:

Ix(I) =
q
(I + 1=2)2 �K2 (2.41)

where K is the angular momentum perpendicular to the cranking axis. This is similar

to I2 = I2x +K2 for the addition of perpendicular vectors with the eigenvalue for the

operator ~I2 being I(I + 1), but eq. (2.41) is traditional. So the angular velocity can

be expressed as

!(I) =
dE(I)

dIx(I)
�
E(I + 1)� E(I � 1)

Ix(I + 1)� Ix(I � 1)
: (2.42)

The static and dynamic moments of inertia denoted by =(1) and =(2) respec-

tively are

=(1)(I) =
Ix(I)

!(I)
(2.43)

and

=(2)(I) =
dIx(I)

d!(I)
�
Ix(I + 1)� Ix(I � 1)

!(I + 1)� !(I � 1)
(2.44)

From the cranking Hamiltonian H 0 = H � !Jx, the total Routhian is given

by

E 0(I) = E(I)� !(I)Ix(I) �
1

2
[E(I + 1) + E(I � 1)]� !(I)Ix(I): (2.45)

When investigating small e�ects in the energy or spin, it is convenient to

subtract out the larger e�ect of the rotor. One way to subtract the rotor e�ect is by

using the Harris formula = = J0 + J1!
2 with parameters J0 and J1 [6]. Values for

J0 and J1 can be chosen based on the ground state band of the nucleus under study,

or can be adopted from another nucleus for comparison. A good reference nucleus

would be the nearest even-even nucleus with fewer or equal N and Z to the nucleus

under study because it is less likely to show strong single-particle e�ects.
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The reference energy and reference angular momentum are de�ned by

E 0reference(!) =
�!2

2
J0 �

!4

4
J1 +

�h2

8J0
; and (2.46)

Ireferencex = !J0 + !3J1: (2.47)

These reference values for energy and spin describe the collective, rotor-like motion.

By subtracting this reference as follows

e0(!) = E 0(!)� E 0reference(!) (2.48)

and

i(!) = Ix(!)� Ireferencex (!); (2.49)

the remaining structure shows the single particle shell e�ects that can be seen from

the experimental data. For this reason e0 is referred to as the quasiparticle energy

and i(!) is referred to as the aligned spin.

This provides a method for �nding Ix, =(1), =(2), e0, and i from experiment

and comparing to quantities in the cranking model. From these results, conclusions

can be drawn about the con�guration and parameters of the nucleus.



Chapter 3

EXPERIMENT AND ANALYSIS

METHODS

Three similar experiments were performed. This chapter will describe the

apparatus and analysis methods used. The speci�cs that di�er in each of these ex-

periments will be discussed in the next chapter prior to the discussion of the results

from each experiment.

The experiments all used the fusion-evaporation reaction to obtain highly-

excited, high-spin states in a nuclei. The Gammasphere [7] and Microball [8] detector

arrays were used to detect  rays and evaporated charged particles. Data was stored

event by event on magnetic tape and sorted for later interpretation.

3.1 Population of High Spin Nuclear States

High-spin states (I � 15�h to 70�h) in a nucleus can be obtained through

fusion-evaporation experiments. In each of our experiments, a target nucleus of mass

� 60u and Z � 28 is bombarded with a projectile nucleus of mass � 30u and Z � 15

at an energy su�cient to overcome the Coulomb barrier. The two nuclei may fuse to
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form a highly excited compound nucleus at high spin. The compound nucleus then

decays by particle evaporation and  ray emission.

The cross-section for particle evaporation is much larger than for  ray

emission, so in the �rst stages of de-excitation particle evaporation dominates [9].

Typically, each nucleon takes away 1�h to 2�h of angular momentum and about 8 MeV

of energy from the compound nucleus. The nucleus then decays by  ray emission.

The example in Fig. 3.1 [10] contains schematic plots describing a fusion-evaporation

experiment that uses a 40Ar projectile nucleus on a 124Sn target nucleus at a beam

energy of 147 MeV. The middle plot shows the energy vs. angular momentum of

the system for one to �ve evaporated neutrons: n, 2n, 3n, 4n, 5n. The �yrast� line

indicated in Fig. 3.1 represents the lowest possible energy for the system at a given

spin. The �gure shows intensity pro�les for the entry populations of the 3n, 4n, and

5n channels, and the expected input angular momentum for this experiment. The

shaded areas show where the system does not have enough energy, as a function of

angular momentum, to support particle evaporation. Further particle evaporation

can occur if the energy and angular momentum are outside of the shaded region in

Fig. 3.1. In this example, after three neutrons are evaporated the system can be

su�ciently near the yrast line that further particle evaporation is excluded.

3.2 Gammasphere Detector Array at LBNL

Gammasphere is a spectrometer designed to detect  rays with high energy

resolution and high e�ciency [7]. Gammasphere has the capacity to hold 110 high-
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Figure 3.1: A schematic diagram showing the decay of a compound nucleus from the

reaction 124Sn(40Ar, xn)164�xEr with a beam energy of 147 MeV. The middle plot

shows the energy vs. angular momentum of the system. Below and to the left are

intensity pro�les for the entry populations of the 3n, 4n, and 5n channels. The top

plot shows the expected input angular momentum for this experiment [10].
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purity germanium detectors, each enclosed in a bismuth-germinate (BGO) Compton-

suppression shield. Compton suppression is discussed in more detail in the following

subsection.

At the time of our experiments, Gammasphere was located at the 88-Inch

Cyclotron of the Lawrence Berkeley National Laboratory's Nuclear Science Division.

This cyclotron is a low-energy accelerator capable of providing the beams of 28;29Si,

and 30P at beam energies of about 130 MeV which were used in our experiments.

3.2.1 Compton-suppressed germanium detectors

Detectors that provide the best e�ciency and resolution for  rays in the

MeV energy range are made using high-purity germanium crystals. The largest such

crystals that can currently be produced commercially are cylinders of about 10 cm

in diameter and 10 cm long [11]. For about 30% of incident 1 MeV  rays, these

detectors produce a signal with a full-energy peak with a full width at half of the

maximum height of about 2 keV. For  rays of 1 MeV energy, about three out of

four  rays are Compton scattered from the germanium crystal without depositing

all of their energy. This leads to a continuum background of partial-energy signals.

For a better ratio of full-energy to partial-energy events (called the peak-to-total or

P/T ratio), the Ge detectors are surrounded by a high density scintillator (BGO

being the most common) that detects  rays which are Compton scattered out of

the germanium crystal. When the BGO scintillator makes such a detection, the Ge

detector signal is suppressed. This results in an improvement in the P/T ratio for a 1

MeV  ray from about 0.25 for the bare Ge crystal to about 0.6 when this suppression
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Figure 3.2: Two sample spectra demonstrating the a�ect of Compton suppression.

The spectra contain two peaks with tails due to Compton scattering. The Compton

suppressed spectrum has peak to total ratio much higher than the unsuppressed

spectrum.

scheme is used. Figure 3.2 shows two 60Co spectra that are identical except one has

Compton suppression and one does not. Coincidence analysis, which is discussed in

section 3.4.2, would be practically impossible without Compton suppression because

of the large Compton-background.

3.3 Microball Detector Array

Microball [8], which was designed at Washington University in St. Louis,

detects light, charged particles (1;2;3H, and 3;4He) emitted in the reaction process.

It �ts inside Gammasphere and consists of 95 CsI(Tl) scintillators closely packed to

cover 97% of the full 4� steradians.
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Figure 3.3: Picture of Microball placed inside of one hemisphere of Gammasphere.

The resolving power of Gammasphere is enormously improved by the capa-

bility of Microball to select speci�c charged-particle evaporation channels from among

a large number of reaction products. It also measures the energies of light charged

particles which allows Doppler shift corrections to be done on an event-by-event basis.

Such corrections are described in section 3.4.1 and can improve the energy resolution

of  rays by factors of up to three. For more information on the design of Microball

and its use in particle identi�cation see reference [8]. Figure 3.3 shows a picture of

Microball placed inside Gammasphere. One of Gammasphere's hemispheres can be

seen, and the cover to Microball has been removed.
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Figure 3.4: Diagram of the kinematics in a beam on target experiment: a) A projec-

tile nucleus is incident on a target nucleus; b) The projectile and target nuclei fuse

together to form a compound nucleus; c) The compound nucleus evaporates neutrons,

protons, and/or � particles; d) The product nucleus decays through electromagnetic

emission (~q being the momentum of the  ray).

3.4 Data Analysis

3.4.1 Kinematics

A correction to the energy of each  ray detected by a high-purity germanium

detector during an experiment can be made with a detailed kinematic calculation.

Figure 3.4 shows the momenta of the various particles involved during the reaction:

a) a projectile is incident upon a target nucleus; b) the projectile and target fuse to

form a compound nucleus; c) the compound nucleus decays by evaporating protons,

neutrons, and � particles; d) the product nucleus further decays through the emission

of  ray radiation. The recoil of the product nucleus due to the emission of  rays

is very small and hence neglected. Since we are investigating the nucleus, we are

interested in the energy of the  rays in the rest frame of the product nucleus. So the

energy measured by the detectors will be Doppler shifted as a result of the velocity

of the product nucleus. Hence in the analysis, the measured  ray energies need to

be Doppler corrected.
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Figure 3.5: Emission of a  ray in the a) lab frame and b) nuclear rest frame.

In our experiments, energies are low enough that particles with mass are not

relativistic. Since momentum is conserved:

~p = ~p0 �
X
i

~pi (3.1)

where ~p is the momentum of the product nucleus, ~p0 is the momentum of the com-

pound nucleus, and ~pi is the momentum of each evaporated particle.

To obtain the Doppler correction for the emitted  ray, consider the emission

of a  ray in the lab frame and the product nucleus rest frame shown in Fig. 3.5 where

~q and ~p are the momenta of the  ray and the product nucleus. The primed system

represents the rest frame of the product nucleus, which is about to emit the  ray,

and the un-primed system represents the lab frame. Using notation consistent with

Jackson [12]: m is the rest mass of the product nucleus, the covariant momentum

4-vector of the  ray is q� = (E=c;�~q), and the contravariant momentum 4-vector

of the product nucleus is p� = (mc; ~p) where  = (1 � v2=c2)�1=2 is the relativistic

coe�cient. The invariant scalar product gives
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q0� � p
0� = q� � p�

(E 0
=c)(

0mc)� ~q0 � ~p0 = (E=c)(mc)� ~q � ~p:

The primed system is in the rest frame of the product nucleus, so ~p0 = 0, and 0 = 1,

so

(E 0
)m = (E)m� ~q � ~p: (3.2)

Relating ~q = (E=c)q̂ and ~p = (mv)p̂

(E 0
)m = (E)m� (E=c)(mv)q̂ � p̂

E 0
 = E

�
1�

v

c
cos �

�
(3.3)

which is a well known result. From the data, it is more convenient to calculate the

vectors ~q and ~p in cartesian coordinates and use eq. (3.2) than to calculate �, the

angle between ~q and ~p. The vector ~q can be found from the position of the detector

and the energy of the  ray. The energy and angle of each detected charged particle

can be used to �nd the momentum of each charged particle non-relativistically. These

momenta can then be applied to eq. (3.1) to obtain ~p.

3.4.2 Coincidence Analysis

A nucleus can decay from one state to another state through many di�erent

intermediate states. Deducing the energy levels of a nucleus from all transitions in

a single  ray energy spectrum is in practice impossible. Because of the multiple

detectors in Gammasphere, it is possible to detect multiple  rays occurring within
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a time interval consistent with a single nuclear decay. For our purposes, such  rays

are considered to occur in coincidence. By isolating the transitions that occur in

coincidence, each decay sequence can be determined and �t together with all other

decay sequences to form a complete energy level diagram.

It is convenient to store coincidence spectra in a two dimensional matrix

called a coincidence matrix with elementsMij. Consider an event with three detected

 rays: {1, 2, 3} of energies {E1, E2, E3}. The coincidence matrix is built by

incrementing all elements in the matrix with coordinates equal to the permutations

of the energies of each  ray: (E1, E2), (E2, E3), (E1, E3), (E2, E1), (E3,

E2), (E3, E1). Consider now the column vector at the coordinate E1. The column

vector contains a spectrum with counts at E2 and E3. If such an incrementation is

performed for all events, the column at E1 will contain a complete spectrum of all

transitions that occur in coincidence with all  rays of energy E1. Similarly, each

column of the matrix contains a complete spectra of  rays that occur in coincidence

with a  ray of energy equal to the coordinate of that column. Selecting a column

spectrum is referred to as gating. Since  ray peaks have some �nite width, gating

on a  ray involves adding the column vectors at the coordinates that lie within the

energy range of the  ray's full width at half of the maximum. Note that due to

the incrementation process, a coincidence matrix is always symmetric, so gating on

rows or columns gives the same result. Similar to a coincidence matrix, a symmetric

cube can be created to select spectra in coincidence with two other  rays called an

E-E-E coincidence cube. Selecting a column spectra from such a cube is referred

to as double gating.
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Figure 3.6: Schematic of the gates of a coincidence matrix from a sample level

scheme.[13] (a) The sample level structure. (b) Spectra that result from various

gates.
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Figure 3.6 shows a schematic of the gates from a coincidence matrix for a

sample level scheme. The sample level scheme is shown in a), and the ideal spectra

resulting from gates are shown in b). Each gate results in a spectrum that contains

counts at energies equal to the transitions that can occur in the same decay path as

the transition of energy equal to the gating energy. Note that the transition of energy

equal to the gating energy is not in the spectrum. One bene�t of this is that it is

possible to see if two transitions of equal energy occur in the same decay sequence.

3.4.3 Background Subtraction

In an ideal experiment each event contains only  rays from a given de-

cay sequence. In a realistic experiment, there will also be  rays detected from un-

wanted sources. Compton scattering is the primary source of unwanted  rays. Other

unwanted sources include background radiation unconnected to the experiment, gi-

ant magnetic dipole resonance, and electron-positron annihilation. Each unwanted

 ray in an event will lead to multiple unwanted counts in the coincidence matrix

because of the incrementation process described in section 3.4.2. Unwanted counts

which have equal probability to occur in coincidence with each wanted event can be

removed from the matrix with some statistical background subtraction techniques.

Radford presented a method to do background subtraction [14] based on Palameta

and Waddington's method [15]. This method uses the total projection of the matrix

onto its axis

Pi �
X
j

Mij; (3.4)
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Figure 3.7: A sample plot of the total projection of a coincidence matrix. At i = 930

keV, Pi � 3:5� 107 counts and the estimated background bi � 1:3� 107 counts.

where Mij represents the coincidence matrix elements described in the previous

section, and splits Pi into a peak spectrum pi and a background spectrum bi. See

Fig. 3.7 for a pictoral description of the total projection and background spectra. The

peak spectrum is

pi = Pi � bi: (3.5)

The choice of how many counts in a channel are peak or background counts is esti-

mated by eye, and does in�uence the quality of the background subtraction to a small

degree. The background matrix Bij which is subtracted from the coincidence matrix

Mij is then:

Bij =
1

T
(PiPj � pipj) (3.6)

where T is the total number of counts in the original matrix. Radford also generalizes

this method for many-fold coincidences such as coincidence cubes (3-fold) [14].
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� 1 2 3 4 ...

�i = �f M1 E2 M3 E4 ...

�i = ��f E1 M2 E3 M4 ...

Table 3.1: Selection rules tabled by the angular momentum and parity of the  ray.

3.4.4 Gamma Decay and Gamma Angular Distributions

The  ray decay of the excited nucleus must satisfy certain selection rules.

Consider the decay between two states of spin and parities Ii(�i) and If(�f ) and let

� be the angular momentum carried away by the emitted  ray. Angular momentum

conservation then requires that

jIf � Iij � � � Ii + If : (3.7)

The emitted radiation can then be of either electric or magnetic or mixed multi-

pole character depending on whether �i = �f or �i = ��f . This is summarized in

Table 3.1, where Mi and Ei refer to magnetic and electric multipole radiation. In

experiments of the type discussed here, the only transitions of importance are of elec-

tric and magnetic dipole (E1, M1) and electric quadrupole (E2) character. It should

also be noted that typically, electric transitions dominate over magnetic transitions

of the same �. Of particular interest are transitions of mixed multipolarity. Consider

the decay between the two states indicated in Fig. 3.8. Selection-rules tell us that

the lowest two multipolarities for this decay are M1 and E2. Thus, the decay may

be of mixed character. It is customary [16] to de�ne the mixing ratio � as the ratio

between the two transition amplitudes A(E2) and A(M1)

� =
A(E2)

A(M1)
: (3.8)
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Figure 3.8: Decay from a spin and parity I� = 4+ state into a I� = 3+ state.

The transition amplitudes can be expressed in terms of E2 and M1 matrix-elements

hf jjE�jjii and hf jjM�jjii:

A(E�) =

"
8�(�+ 1)e2b�

�[(2�+ 1)!!]2�h

�
E

�hc

�2�+1 � 1

2Ii + 1

�#1=2
hf jjE�jjii (3.9)

for � = 2 and

A(M�) =

"
8�(�+ 1)�2Nb

��1

�[(2�+ 1)!!]2�h

�
E

�hc

�2�+1 � 1

2Ii + 1

�#1=2
hf jjM�jjii (3.10)

for � = 1. In the above equations, e2 = 1:440� 10�10 keV cm, �2N = 1:5922� 10�38

keV cm3, and b = 10�24 cm2.

By observing the angular distributions of emitted  rays, the angular mo-

mentum � carried away from the compound nucleus can be determined. However, it is

not possible to distinguish between electric and magnetic transitions. A general anal-

ysis of angular distributions was done by Rose and Brink [17] and Vaillancourt and

Taras [18]. A more speci�c analysis for  rays following fusion-evaporation reactions

was made by Mateosian and Sunyar [19], and Taras and Haas [20]. The results of

these works show that angular distributions are dependent on the angular momentum

removed from the nucleus and the emitted  ray.
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The angular distributionW (�) can be represented by a Legendre polynomial

series:

W (�) =
X
k

akPk(cos �) (3.11)

where the intensity is normalized such that a0 = 1. Theoretical values for ak are

plotted in Taras and Haas [20] as a function of the mixing ratio for k = 2, 4, 6 and

for a change in the angular momentum of the nucleus from a gain of 2�h to a loss of

2�h. Coe�cients of ak with odd k do not occur because of symmetry considerations.

Figure 3.9 and 3.10 show the theoretical plots for angular momentum loss of 2�h

(J ! J � 2) and 1�h (J ! J � 1) as a function of the mixing ratio. Solid and dashed

lines represent angular distribution coe�cients for two initial states of speci�c angular

momentum. These two lines illustrate the variance that the angular distribution

coe�cients have on the initial spin.

There is some overlap in the angular distribution coe�cients for certain

combinations of angular momenta and mixing ratios, but such ambiguities can often

be resolved by considering level scheme, selection rules, and intensity probabilities.

Since the nucleus starts from a high spin state and ends in a low spin state, angular

momentum loss is much more frequent than angular momentum gain. If the system

loses 2�h of angular momentum with an observed  ray, that  ray is almost certainly

a pure E2 transition. This is because E3, M2, and larger order multipolarities are

too weak to be observed, and E1 and M1 transitions cannot carry the 2�h of angular

momentum that is lost from the nucleus. Such a pure E2 transition is called a

�stretched� E2 transition. The coe�cients of the stretched E2 transition can be read

from Fig. 3.9 as a2 = 0:4, a4 � �0:18, and a6 = 0:0. Since a loss in angular momentum
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Figure 3.9: Plot of ak for a change in angular momentum of 2�h (J ! J � 2). The

solid line is calculated for an initial angular momentum of 10�h and �nal angular

momentum of 8�h. The dashed line is calculated for an initial angular momentum

of 7�h and �nal angular momentum of 5�h. Mixing ratio � is the ratio of octupole to

quadrupole transition strengths.

of 1�h does not have a negative value for a4 (from Fig. 3.10), transitions that carry

2�h of angular momentum from the nucleus are distinguishable from transitions that

carry 1�h of angular momentum. Where possible, it is assumed that transitions remove

some angular momentum from the nucleus; but transitions that do not change or that

increase the angular momentum of the nucleus can still occur. The majority of the

angular distribution analysis focuses on determining if a transition is a stretched E2,

a pure E1 or M1, or the mixing ratio for an E2=M1 transition. Pure E1 and pure

M1 transitions are not distinguishable from angular distributions.

To create an angular distribution for a transition, the intensity of the cor-

responding  ray at each angle is measured by summing the total number of counts

in the peak at the transition energy for all detectors at a given angle. For an angle
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Figure 3.10: Plot of ak for a change in angular momentum of 1�h (J ! J � 1). The

solid line is calculated for an initial angular momentum of 10�h and �nal angular

momentum of 9�h. The dashed line is calculated for an initial angular momentum

of 6�h and �nal angular momentum of 5�h. Mixing ratio � is the ratio of dipole to

quadrupole transition strengths.
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measured between the beamline and a detector, with the target being at the vertex,

Gammasphere has slots for detectors positioned in rings at 17 di�erent angles, making

it possible to plot 17 points on an angular distribution plot. But since there are a

di�erent number of detectors in each ring, and each detector has a di�erent e�ciency,

the number of counts measured for any given angle needs to be corrected. It is con-

venient and e�ective to measure the e�ciency of each ring of detectors with a static

calibration source, which emits radiation isotropically. However, during the experi-

ment, absorption due to the target frame may lead to a slight shift in the e�ective

e�ciency of each ring, so the e�ciency of each ring is corrected to known transitions

in the nucleus under study.



Chapter 4

RESULTS AND DISCUSSION

The previous chapter described general methods applied to the three exper-

iments performed. This chapter presents the speci�cs of each experiment followed

by a discussion. Two isotopes were studied. This chapter is split into two sections,

one for 80Sr and one for 85Y. Two experiments performed provided data on 80Sr, one

provided data for 85Y. These isotopes are not speci�cally related to each other except

that they both have a mass of about 80u, so both isotopes occupy single-particle

states up to the g9=2 subshell.

4.1 Strontium 80

4.1.1 Experimental Speci�cs

Two experiments were performed at the Lawrence Berkeley National Labo-

ratory using the 88" cyclotron, Gammasphere, and Microball detector arrays (these

detector arrays were discussed in Chapter 3).

In the �rst experiment, the 88" cyclotron provided a 128 MeV 29Si beam

onto a 58Ni target producing 80Sr via the 58Ni(29Si, �2pn)80Sr reaction. The self

50



51

supporting thin target had an e�ective thickness of 246 �g/cm2. This experiment

was performed in March of 1994 when Gammasphere had 36 Compton suppressed Ge

detectors installed. An E-E-E coincidence cube was constructed with 1:3 � 108

events.

In the second experiment the 88" cyclotron provided a 130 MeV 28Si beam

onto a 58Ni target producing 80Sr via the 58Ni(28Si, �2p)80Sr reaction. Thin target

data was collected using two stacked, isotopically enriched 58Ni foils, each with a

thickness of approximately 400 �g/cm2. In addition, a backed target was used con-

sisting of 420 �g/cm2 58Ni evaporated onto a 181Ta backing of su�cient thickness

to stop the recoiling 80Sr nuclei completely. This experiment was performed in 1995

when Gammasphere had 57 detectors installed. Data was collected using the stacked

thin target over a period of three days, and with the backed target over a period of

21 hours.

A total of 1:53 � 109 triple- or higher-fold  ray coincident events were

collected from the thin target run. Of these events, 1:82� 108 had 2 protons and one

� particle detected in coincidence. The thin target data from the second experiment

had lower resolution than the data from the �rst experiment, and so did not provide

additional results from coincidence analysis. For the backed target run, about 2:7�108

triple- or higher-fold  ray coincident events were collected. Of these, 3:2�107 events

were in the �2p reaction channel. There was no previous backed target data, so

lifetime measurements were entirely derived from the second experiment.
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Figure 4.1: Total projection of the �2p channel. The most intense peaks from each

channel are labeled.

4.1.2 Results Using Thin Target Data

Figure 4.1 shows the total projection of triple-gated events in the �2p exit

channel. The dominant channel in the �2p gate is 80Sr. Other channels appear in

the �2p gate because of undetected particles. Primarily, these undetected particles

are neutrons which are not detected in this experiment. Also, 3% of protons and

� particles are not detected by Microball. As a result, while 80Sr is the dominant

channel in the �2p gate, there are impurities from 79Sr, 79Rb, and 76Kr, which are

produced via the �2pn, �3p, and 2�2p decay channels respectively.

The level scheme deduced from the data is presented in Fig. 4.2. New energy

levels and transitions are deduced from coincidence analysis (see section 3.4.2). New

spin and parity assignments are deduced from angular distributions and selection

rules (see section 3.4.4).
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Figures 4.3 and 4.4 show gated spectra constructed from coincidences with

each band labeled in Fig. 4.2 The upper panel of Fig. 4.3 shows a spectrum which

is the sum of nine double gates. The two energies used for each of the nine double

gates are from the nine combinations of 386, 595, or 783 keV with 1324, 1474, or

1578 keV. These nine pairs are (386, 1324), (386, 1474), (386, 1578), (595, 1324),

(595, 1474), (595, 1578), (783, 1324), (783, 1474), and (783, 1578). The transitions

386, 595, and 783 keV are at the lower part of the ground state band (GSB) between

states with spins 0-6�h, and the transitions 1324, 1474, and 1578 keV are from the

middle of the GSB between states with spins 12-18�h. The counts selected from these

gates result in a spectrum that contains peaks from transitions in the GSB band.

Note that compared to the other selected peaks, the gated peaks in the spectra have

intensities which appear to be weaker than their actual transition strengths. This

is because each spectrum used for the summation does not include the peaks at the

gated energies (as seen in Fig. 3.6). Similarly, the remaining panels in Figs. 4.3 and

4.4 include spectra also resulting from nine double gates each between transitions 386,

595, or 783 keV with a set of three transitions appropriate for each band indicated.

These are: (lower panel of Fig. 4.3) 970, 1121, or 1260 keV for SB1; (bottom panel of

Fig. 4.4) 877, 997, or 1105 keV for SB2; (middle panel of Fig. 4.4) 662, 867, or 1035

keV for SB3; (top panel of Fig. 4.4) 1030, 1165, or 1307 keV for SB4. In Fig. 4.4,

transitions within the band are marked with triangles, and transitions that feed from

the band to the ground state band are marked with crosses.

The GSB band was mostly unchanged from the previous level scheme [21].

The one change made was the removal of the 1860 keV line previously placed in the
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GSB band above the 20+ level. Also, four short new sequences were added that feed

into the GSB, labeled as a, b, c, and d in Fig. 4.2. Sequence c contains the 1860 keV

transition which was previously placed in the GSB.

The energy of SB3 was shifted down. Previously the 7+ state in SB3 fed

into the 5+ state of SB2 via a 1343 keV transition. This work substituted a 1099

keV transition for the 1343 keV transition, shifting the whole of SB3 down by 244

keV. This also led to the discovery of other side feeding from SB3 to SB2 via the 884

and 754 keV transitions. Similarly, two more states and four more transitions were

discovered that fed from the bottom of SB3 into the GSB. The two states are the

2897 and 2837 keV states, the four transitions are the 499, 557, 1914, and 1856 keV

transitions.

Six new levels and seven new transitions were discovered that form the new

band, SB4, which feeds into the 8+ and 10+ states of the GSB. The transitions were

not strong enough to measure spin or parity for the states in SB4.

The 1851 keV transition was added to the top of SB1. Also addeded were the

1589 keV transition which feeds into the middle of SB1 at the 7730 keV energy level,

and the 901 keV transition that feeds out of SB1 into the 8+ level of the GSB. The 429

and 756 keV transitions were added to the bottom of SB2. Five new transitions were

added to the top of SB3. These transitions include the 1343 keV transition which was

previously described by Davie et al. [21] as feeding from the 7+ state of SB3 to the

5+ state of SB2.

An angular distribution analysis was performed for many of the transitions

using the techniques described in section 3.4.4. The data was �t to the function
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W (�) = A0[1+A2P2(cos �)+A4P4(cos �)]. Examples of the �ts are shown in Fig. 4.5.

Since W (�) is symmetric about 90�, placing data points for angles �0 > 90� instead at

angles of � = 90� � �0 does not e�ect the �t. This re�ection about 90� is done to aid

inspection by placing the data points closer together. With the arguments described

in section 3.4.4 and the angular distribution coe�cients shown in Table 4.1, we can

determine the appropriate spin change of the system associated with many of the

transitions. The 1838 keV line appears to take 1�h of angular momentum from the

nucleus because the coe�cient of the 1838 keV angular distribution listed in Table 4.1

a2 = �0:25 is not possible for a stretched E2 (see Fig. 3.9, � = 0). Since a4 6= 0

for the 1838 keV transition, we can say it is not a pure J ! J � 1 transition, so it

must be a mixed E2=M1 transition. By selection rules, we know the parity does not

change for an E2=M1 transition, so the 3602 keV state in SB1 has spin and parity

I� = 7+. The 1547 keV transition can not take only 1�h of angular momentum from

the system because, with such a large value of a2, a J ! J � 1 transition would have

a4 � 0:1, but the 1547 keV has a4 = �0:08 � 0:11. Thus the 1547 keV transition

must be a stretched E2 transition, so we know that the 10875 keV state in side band

�a� has I� = 20+. Similar deduction was used to determine the spins and parities of

six other states which were not previously known. From the mixed E2=M1 nature

of the 1314, 1817 keV transitions, we can deduce the spins and parities of the 2295,

3581 keV states, respectively (shown in Fig. 4.2). From the stretched E2 nature of

the 877, 884, 662 keV transitions we can deduce the spins and parities of the 3172,

4056, 3394 keV states. From the stretched E2 nature of the 777 and 798 keV we can

deduce using either of the two transitions the spin and parity of the 4397 keV level.
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E I�i I�f Intensitya a2 a4 Multipolarity �

662 9+ 7+ 19.9(3) 0.12(6) -0.01(8) E2

724 5+ 3+ 23.5(5) 0.13(5) -0.10(7) E2

777 9+ 7+ 14.3(4) -0.53(9) 0.59(11) E2

783 6+ 4+ 100(1) 0.42(6) -0.16(8) E2

798 9+ 7+ 7.9(5) 0.29(15) -0.04(21) E2

877 7+ 5+ 13.1(2) 0.30(6) -0.11(9) E2

884 9+ 7+ 20.7(2) 0.21(6) -0.08(8) E2

902 7+ 8+ 3.0(3) 0.65(12) 0.31(16) M1/E2 �1.2
937 8+ 6+ 73.4(6) 0.32(5) -0.09(7) E2

970 (11+) 9+ 15.4(4) 0.39(8) -0.09(7) E2

1035 (13+) (11+) 13.6(3) 0.31(7) -0.17(9) E2

1065 10+ 8+ 57.8(6) 0.42(5) -0.14(8) E2

1105 (11+) (9+) 8.0(2) 0.50(8) -0.09(10) E2

1165 (17+) (15+) 10.4(3) 0.42(8) -0.13(10) E2

1186 12+ 10+ 63.3(4) 0.31(6) -0.05(7) E2

1198 (15+) (13+) 9.8(4) 0.40(8) -0.35(12) E2

1220 (13+) (11+) 6.9(3) 0.42(8) -0.15(11) E2

1262 (15+) (13+) 30.6(4) 0.40(5) -0.11(8) E2

1314 5+ 4+ 30.6(3) 0.33(5) -0.02(8) M1/E2 -0.38(5)

1324 14+ 12+ 21.5(3) 0.43(7) -0.07(9) E2

1343 (17+) (15+) 20.5(3) 0.33(6) 0.07(8) E2

1368 (17+) (15+) 12.7(3) 0.35(7) 0.01(9) E2

1441 (19+) (17+) 12.8(4) 0.20(6) 0.00(8) E2

1474 16+ 14+ 29.2(3) 0.40(5) -0.05(8) E2

1547 20+ 18+ 8.2(3) 0.62(8) -0.08(11) E2

1686 (23+) (21+) 11.4(3) 0.46(6) -0.07(9) E2

1817 7+ 6+ 8.2(2) 0.07(6) -0.05(8) M1/E2 -0.18(5)

1838 7+ 6+ 5.3(2) -0.25(6) 0.02(8) M1/E2 -0.18(5)

1914 (5+) 4+ 3.0(3) 0.21(9) 0.14(11) M1/E2 �-0.34
1937 (25+) (23+) 1.4(2) 0.60(14) 0.08(17) E 2

2113 (26+) (24+) 2.0(3) 0.87(12) -0.11(15) E2
a Normalized to 783 keV transition.

Table 4.1: Partial table of transitions in 80Sr.
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4.1.3 Backed-Target Data: Lifetimes and Intrinsic Quadrupole

Moments

The lifetimes and quadrupole measurements are of considerable interest be-

cause they give direct information regarding the collectivity of the states involved. In

many cases one observes a phenomenon called �band termination.� Band termination

occurs when, at high spins, it becomes energetically favorable for a nucleus to achieve

a high angular momenta from the alignment of the individual nucleons with respect

to the �axis of rotation�. Within a given shell there is a limit to the maximum angular

momentum that can be formed from the available states. When a nucleus reaches

this limit it is referred to as band termination. Thus, band termination corresponds

to a transition from collectivity to single particle structure. Experimentally, such a

transition results in a signi�cant decrease in the intrinsic quadrupole moment Qt with

increasing spins. It has been suggested that band termination could occur in 80Sr.

Backed target data can be used to determine the lifetimes of states in cases

where the lifetime is shorter or of the order of the stopping time of the recoils in

the target backing. Backed target analysis was performed by Winchell et al. [22],

and included in this thesis because the author is a coauthor on that paper and it is

relevant to the discussion. The line shape of the gamma-ray peak is determined by

the �history� of the slowing down and decay process of each recoil. Using the backed-

target data, lifetimes of several states in the GSB and SB1 were analyzed using Monte

Carlo calculations done by the LINESHAPE codes [23]. For a detailed discussion of these

programs and their use, see reference [24] and references quoted therin. The spectra
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used in the �tting procedure were created by gating below the transitions of interest,

using the matrices described in section 4.2.1. For the GSB, the spectrum was created

by gating on the 783 keV 6+ ! 4+ transition. In order to avoid contamination from

lines in SB2 and SB3, gates on the 386 keV and 595 keV transitions were not used.

For SB1, clean spectra were obtained by gating on the 777, 798, 1817, and 1838 keV

transitions. Because the spectra used in the �tting procedure were created by gating

from below the transitions of interest, some assumptions had to be made regarding

side feeding into the states being analyzed. Intensities for side feeding were deduced

from the relative intensities of transitions within the band. For the lifetimes of side-

feeding transitions, a rotational model of three transitions with a �xed moment of

inertia of 35�h2=MeV was assumed. Quadrupole moments for side feeding are adjusted

to give minimum �2 during the LINESHAPE �tting procedure.

Examples of the �tted spectra for one of the ground state band transitions

are shown in Fig. 4.6. From the analysis, lifetimes of �ve states in the ground-state

band and four states in SB1 are extracted and tabulated in Table 4.2. These lifetimes

are converted into transition quadrupole moments using the formula

Q2
t =

16�

5
�

1

�
�

1

1 + �
� [12:3E5

hIK20jI � 2Ki2]�1; (4.1)

where Qt, E and lifetime � are in units of eb, MeV, and picosecond, respectively,

and � is the total internal conversion coe�cient of the transition. A value of K = 6

was assumed for SB1.

The extracted transition quadrupole moments (Qt) for the ground-state

band are plotted in Fig. 4.7 along with those obtained by Davie et al. [21]. The

uncertainties of the measured Qt's do not include those associated with the uncer-
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Figure 4.6: Example of backed target data, showing DBLS �t. The line shown is the

1065 keV 10+ ! 8+ transition.

I� Ex (keV) � (ps) Qt (eb)

8+ 2701 0.41(1) 2.89+0:05
�0:04

10+ 3766 0.18(1) 3.12+0:04
�0:04

12+ 4952 0.13(1) 2.80+0:07
�0:14

14+ 6276 0.17(1) 1.82+0:05
�0:02

16+ 7750 0.04(1) 2.97+0:37
�0:25

11+ 5349 0.42(3) 3.8+0:2
�0:2

13+ 6470 0.19(3) 3.4+0:3
�0:2

15+ 7730 0.12(3) 3.0+0:4
�0:3

17+ 9098 0.06(3) 3.2+1:1
�0:3

Table 4.2: Measured lifetimes and quadrupole moments for selected transitions in the

GSB and SB1 of 80Sr.
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Figure 4.7: Transition quadrupole moments in the ground-state band derived from

lineshape analysis. Also shown are results from an earlier work in 80Sr.

tainties of the stopping powers. While the previous results and present work are not

in agreement for all levels, neither set of results shows a clear downward trend in the

Qt's with increasing spin, which would be expected for band termination.

As can be seen in Table 4.2, quadrupole moments for SB1 are roughly con-

stant over the measured range. Quadrupole moments for this band were extracted

with the assumption that K = 6. Assuming an axially symmetric prolate shape, the

measured quadrupole moments correspond to a deformation of �2 � 0:35.

4.1.4 Cranking Analysis

A cranking analysis of the data was performed as outlined in section 2.7.

Kinematic and dynamic moments of inertia for the GSB are plotted in Fig. 4.8. A

gradual alignment can be seen at a frequency of �h! = 0:55 MeV, followed by a more

abrupt alignment at �h! = 0:78 MeV. In 82Sr, which has a similar pattern in the
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moment of inertia of the ground-state band, measurements made by Kucharska et al.

of the g-factors near the �rst backbend show that the alignment is due to a pair of g9=2

protons [25]. The second upbend in 82Sr would then be due to a neutron alignment.

Comparisons to other nuclei in this mass region support this interpretation. The

yrast band of the odd-N nucleus 79Sr shows a sharp upbend at �h! = 0:57 MeV [26].

This must be attributed to the alignment of a pair of protons, since the odd neutron

blocks the alignment of a neutron pair. The neighboring odd-Z Nuclei 79Rb [27] and

81Y [28] show no crossings below about �h! = 0:68 MeV, indicating that the higher

upbend involves an alignment of a pair of g9=2 neutrons. Because our assignments for

transitions in the high-spin portion of the GSB are di�erent than Davie et al. [21],

we do not see the unexplained staggering previously seen in the =(2) plot. It is worth

noting that the dip in Qt at I = 14�h occurs near the top of the broad proton-crossing

alignment discussed above, suggesting that the loss in collectivity, noted in the lifetime

measurements, might be related to band-band interaction.

The moments of inertia for the sidebands are plotted in Fig. 4.9. SB2 shows

a proton upbend at �h! � 0:5 MeV, similar to the one seen in the GSB, and so is most

likely based on a neutron excitation. SB1 and SB3 show sharp upbends at frequencies

of 0.68 MeV and 0.72 MeV, respectively. Assuming these are similar to the neutron

crossing seen in the GSB, this might indicate slightly di�erent deformations for these

con�gurations. SB4, which does not extend as high in angular frequency as SB1 or

SB3, shows what might be the beginning of an upbend at about �h! = 0:75 MeV. A

comparison to theoretical models will aid in the interpretation of these upbends.
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4.1.5 Comparison to cranked mean-�eld with pairing Calcu-

lations

In order to better understand the nature of the collective excitations and

the evolution of shape in 80Sr, cranked mean-�eld with pairing calculations were

performed. From calculating the total energy of the model for di�erent deformations,

using Strutinsky shell correction, total Routhian surfaces can be constructed as seen

in Fig. 4.10. The four surfaces each consist of a 15x17 mesh of data points smoothed

and plotted on a Hill-Wheeler coordinate system. The angular coordinate  = 0� is

angled at 30� above the horizontal with counter-clockwise being the positive direction

so that the plot is symmetric about the  = 60�(120�) line. Minima in these plots

are the energetically favored deformations. Two competing minima, labeled as a and

b, are relevant for the following discussion. As can be seen in the �gure, collective

prolate deformation a with �2 � 0:35 is predicted to be the preferred shape at low

angular frequency. At �h! = 0:4 MeV, there is pronounced gamma softness towards

the collective oblate axis ( = �60�), and at �h! = 0:6 MeV there is a minimum at the

triaxial deformation b at coordinates (�2; ) = (0:24; 30�) in addition to the prolate

minimum. At �h! = 0:8 MeV the prolate minimum a has disappeared and the triaxial

minimum b has become more well de�ned and has moved closer to the  = �60� axis.

Because pairing is treated self-consistently, a comparison can be made be-

tween calculated and experimental moments of inertia. In Fig. 4.11, the predicted

kinematic moments of inertia for the two sets of deformation parameters are plotted

along with the experimental values for the GSB and side band �a�. The theoretical
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local minima (� = 0:20;  = +60�) and (� = 0:35;  = �120�) which are due to the

symmetry related with low angular velocity. Local maxima exist at (� = 0:20;  = 0�)

and (� = 0:20;  = �120�). At ! = 0:6 MeV/�h the local maximum at  = 0� has

disappeared. At ! = 0:8 MeV/�h only two local minima remain.
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Figure 4.11: Theoretical =(1) for 80Sr.

moment of inertia for the prolate deformation a (solid line) is in good agreement with

the experimental moments of inertia for the GSB (dots). The theoretical moments

of inertia for the triaxial deformation b (dashed line) agrees qualitatively with the

experimental moments of inertia for side band �a� (circles).

This compares closely with theoretical predictions by Nazarewicz et al. [29],

shown in Fig.s 4.12 and 4.13. In these �gures the theoretical energies are plotted

as a function of angular momentum for several equilibrium deformations. These

deformations are described in the insets using Hill-Wheeler coordinates and labeled

1-21. The parities of states with � = +1 or � = �1 are indicated with dots or circles,

respectively. States with signature � = 0 are plotted in Fig. 4.12. States with � = 1

signature are plotted in Fig. 4.13. In Fig. 4.12 the prolate deformation numbered as

1 is yrast up to 20�h of angular momentum. At this angular momentum, the triaxial

deformation labeled 2 in Fig. 4.12, consistent with deformation b from Fig. 4.10,
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Figure 4.12: Figure obtained from Nazarewicz et al. [29] for the energies of even

signature states of 80Sr at various deformations described in the inset using the Hill-

Wheeler coordinates.
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Figure 4.13: Figure obtained from Nazarewicz et al. [29] for the energies of odd

signature states of 80Sr at various deformations described in the inset using the Hill-

Wheeler coordinates.
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becomes yrast. This is consistent with our experimental side band �a� which becomes

yrast at 20�h. However, Nazarewicz predicts the positive parity and even signature

(r = +1) triaxial states to be about 0.7 MeV higher in energy than the corresponding

odd signature (r = �1) states which are shown in Fig. 4.13. With the magnitude of

the energies involved, it is not unexpected to observe such a discrepancy.

4.2 Yttrium 85

4.2.1 Experimental Speci�cs

The experiment was performed at the 88-Inch Cyclotron at the Lawrence

Berkeley National Laboratory. High-spin states in 85Ywere populated via the 58Ni(31P,

4p) reaction at a beam energy of 134 MeV. The target was a self-supporting, 380

�g/cm2 58Ni foil. Gamma rays were detected with the Gammasphere array [7], then

comprised of 86 Compton suppressed Ge detectors. Evaporated charged particles

were detected with Microball [8], an array of 95 CsI(Tl) detectors covering about

97% of 4�. The event trigger required the presence of a minimum of three Compton-

suppressed Ge detectors and registered any coincidence of charged particles that were

detected with the Microball. Calibration data consisted of gamma spectra from 56Co

and 152Eu sources that were obtained immediately after the run, and scattering data

from reactions of protons, deuterons, and � particles on carbon and gold targets for

the Microball. A total of 3� 109 events were collected. This paper describes results

from the 4p channel, which contained 7:5� 107 events.
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Figure 4.14: Total projection of data from the 85Y experiment. The upper panel

shows the spectrum from 0 to 1 MeV, the lower panel shows the spectrum from 1 to

2 MeV. Some of the identi�able peaks from transitions in 85Y, 84Y, 82Sr, and 85Zr are

labeled with squares, diamonds, triangles, and crosses.

4.2.2 Results

Figure 4.14 shows a singles spectrum constructed from all triple and higher

fold events of  rays in coincidence with four protons and no � particles. Peaks

labeled with a square in Fig. 4.14 are associated with transitions in 85Y. By intensity,

this spectrum contains 81% 85Y. Also present in this spectrum are  rays from 84Y,

82Sr, and 85Zr which are associated with the 4pn, �3p, and 3pn evaporation channels,

and are populated with relative intensities of 11.4%, 4.6%, and 3.0%, respectively.

In the case of the 3pn channel, a neutron was not detected and an additional proton
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Figure 4.15: Deduced level scheme for 85Y.

was detected. It is possible but rare for a neutron to be detected by Microball, and

then misidenti�ed as a proton. Another more likely possibility is for a proton from a

di�erent reaction to be detected during the same time window given for the decay of

the compound nucleus into 85Zr.

The partial level scheme deduced from the data is presented in Fig. 4.15.

New energy levels and transitions are deduced from the coincidence analysis which

will now be discussed. The spectrum resulting from a gate on the 1023 keV line,

corresponding to the 25=2
+
to 21=2

+
transition, is shown in Fig. 4.16a. The most
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Figure 4.16: Some gated spectra for 85Y. The bottom panel contains a plot of a

single gated spectrum on 1023 keV. The top panel contains a plot of a double gated

spectrum on 655 with 469 keV. The most intense peaks are labeled by the band to

which they belong (see Fig. 4.15 for band labels).

intense peaks in this spectrum are from transitions in the yrast band and strong

interband transitions. Double gated spectra were generated from the E � E � E

cube. Figure 4.16b shows the spectrum resulting from a double gate on the 469 keV

and 655 keV transitions. This spectrum identi�es transitions in two negative parity

decay sequences feeding the yrast band only at low spin. It also demonstrates the

complexity involved in identifying the level structure of the negative-parity states and

shows many low intensity peaks that could not be placed in the level scheme.

A sample of the angular distribution data is shown in Fig. 4.17. These

plots show data points and best �ts to the Legendre polynomial W (�) = A0[1 +
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the theoretical �t for a pure E2 transition. The dotted and dash dotted lines in the

bottom panel indicate the theoretical �t for a transition  ray carrying L units of

angular momentum for a pure L = 1 or L = 2 transition.
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A2P2(cos �) + A4P4(cos �)]. In the top and middle panels, theoretical angular distri-

butions for stretched E2 transitions are drawn as dotted lines. The bottom panel

shows an angular distribution that appears to belong to a transition that takes 1�h

of angular momentum away from the nucleus. This conclusion is made based on the

values of the coe�cients A2 and A4 obtained from the Legendre �t, listed in Table 4.3.

For the 742 keV transitions, the A2 and A4 values are proportional to the calculated

coe�cients a2 and a4 in 3.10 for a J ! J � 1 transition at arctan � � 0� or 90�. In

the bottom panel of Fig. 4.17, two additional lines are drawn to show the theoretical

angular distributions for a pure E1 or M1 transition (dotted line), and for a pure E2

transition (dash-dotted line). One can see from the �gure that detectors at angles

near 0� and 180� degrees would make mixing measurements more accurate (the lack

of detectors at these angles was due to the di�culties related to having detectors near

the beamline).

4.2.3 Level Scheme

The level scheme shown in Fig. 4.15 extends the previous level scheme [21]

by adding 37 new  rays and 24 new energy levels. The placement of levels in

the present study was based on coincidence, intensity, and energy relations. Spin

assignments were based on angular distributions and selection rules. Tables 4.3-4.7

list the observed transitions in 85Y according to the band and energy of the transitions'

initial states. Listed at the end of Table 4.6 and in Table 4.7 are 15 states from the

level scheme that do not belong to one of the six numbered bands.
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Ei I�i I�f E Intensity A2 A4 Multipolarity �2(�min)

or tan�1�min

2991 21
2

+ 21
2

+
341 3.8(2) 0:06(3) 0:01(5) 36(30), -57(25) 9, 20

17
2

+
1193 13.6(5) 0:26(3) �0:04(4) E2

4080 25
2

+ 23
2

690 2.2(2)
21
2

+
1089 8.4(3) 0:13(6) �0:25(8) E2

5449 29
2

+ 27
2

844 2.2(2)
25
2

+
1288 4.3(2)

25
2

+
1369 2.9(2)

6740 33
2

+ 33
2

+
378 2.5(2)

29
2

+
1291 1.6(2) 0:26(5) �0:08(6) E2

29
2

+
1825 4.1(2) 0:23(3) �0:11(2) E2

3392 23
2

21
2

+
402 2.4(2) �0:32(9) 0:02(15) 4(6), 7.00 17, 30

21
2

+
742 27.6(8) �0:36(2) 0:03(3) 6(3), 81(2) 8, 29

4604 27
2

25
2

+
524 8.6(3)

25
2

+
931 10.4(3) �0:56(3) 0:04(4) �10, �78 35, 80

23
2

1212 2.5(2)

6179 31
2

27
2

730 0.6(1) E2
27
2

1574 3.7(2) 0:26(4) �0:07(5) E2

Table 4.3: Table of transitions in 85Y for bands 1 and 2.

Ei I�i I�f E Intensity A2 A4 Multipolarity �2(�min)

or tan�1�min

815 13
2

+ 9
2

+
795 105.6(30) 0:19(1) �0:01(1) E2

1799 17
2

+ 13
2

+
983 80.3(24) 0:18(2) �0:08(2) E2

2650 21
2

+ 17
2

+
852 57.9(16) 0:21(3) �0:08(4) E2

3673 25
2

+ 23
2

281 23.3(7) �0:40(1) �0:09(2) �4, �85 120, 460
21
2

+
1023 17.6(5) 0:35(1) �0:06(2) E2

4914 29
2

+ 27
2

310 8.4(3) �0:35(2) �0:01(3) 5(4), �85 22, 56
25
2

+
1241 17.7(5) 0:33(2) �0:16(2) E2

6361 33
2

+ 29
2

+
1447 12.4(4) 0:24(1) �0:12(2) E2

8007 37
2

+ 33
2

+
1268 4.1(1)

33
2

+
1646 6.1(2) 0:48(5) �0:26(2) E2

9478 41
2

+ 37
2

+
1470 7.1(2) 0:30(2) �0:20(3) E2

11107 45
2

+ 41
2

+
1629 5.3(2)

12936 49
2

+ 45
2

+
1829 3.0(1)

15135 53
2

+ 49
2

+
2199 0.6(1) E2

Table 4.4: Table of transitions in 85Y for band 3.
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Ei I�i I�f E Intensity A2 A4 Multipolarity �2(�min)

or tan�1�min

2304 15
2

� 13
2

+
655 14.8(5) �0:25(1) �0:02(2) (E1)

13
2

+
1489 8.5(3) �0:11(2) 0:00(4) (E1)

2927 19
2

� 21
2

+
276 5.4(2) 0:00(3) �0:09(5) (E1)

15
2

�
623 11.6(5)

17
2

+
666 9.9(4) �0:31(9) �0:02(9) (E1)

17
2

+
1129 3.2(2)

4006 23
2

�
485

21
2

�
700 6.3(3) �0:58(5) �0:09(7) 10(8), 80(5) 6, 24

19
2

�
1079 8.1(3) 0:24(2) �0:10(2) E2

5025 27
2

� 25
2

�
660 21.5(6) �0:52(2) �0:05(2) 7(2), �83 18, 300

2508 17
2

� 15
2

�
204 25.2(9) �0:28(1) �0:14(2)

3306 21
2

�
286

19
2

�
379 20.8(8) �0:31(1) 0:11(1) �5, �84 57, 73

17
2

�
798 10.5(8)

4363 25
2

� 23
2

�
357 10.3(4) �0:32(1) 0:09(2) �5, �84 110, 150

21
2

�
1057 20.6(6) 0:18(2) �0:18(3) E2

5439 29
2

� 27
2

�
417 11.7(4) �0:34(4) 0:01(5) 5(7), 85(6) 8, 19

25
2

�
1076 8.2(3)

Table 4.5: Table of transitions in 85Y for bands 4 and 5.

Ei I�i I�f E Intensity A2 A4 Multipolarity �2(�min)

or tan�1�min

1659 1.1(1)

1787 0.1(1)

1909 0.3(1)

2056 0.1(1)

2200 0.1(1)

474 9
2

+
454 1.3(7)

1180 11
2

13
2

+
365 1.7(2) �0:19(3) 0:08(5) -2(5), 85(5) 18, 19

706 1.6(2) �0:09(4) �0:02(5)
9
2

+
1159 2.4(2) �0:55(4) 0:15(5) �12, �74 100, 100

1649 13
2

+ 11
2

469 7.8(3)
13
2

+
834 4.7(3)

9
2

+
1630 1.7(5)

1790 13
2

+
976 9.2(6)

Table 4.6: Table of transitions in 85Y for band 6 and some of the levels in the level

scheme that do not appear to belong to a band.
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Ei I�i I�f E Intensity A2 A4 Multipolarity �2(�min)

or tan�1�min

2260 17
2

+ 17
2

+
463 4.3(3)

13
2

+
1445 10.1(6) 0:27(9) �0:11(2) E2

2747 17
2

�
238 4.6(2) �0:01(3) �0:20(4) E2

3020 274 4.0(4) �0:40(4) 0:00(5) 6(6), 83(4) 14, 29

512

3521 501

4160 25
2

+ 25
2

+
487 2.4(3) �0:12(5) �0:03(6) �52, �-78

23
2

768 4.2(3) �0:42(4) �0:02(7) 7(8), 81(7) 7, 16
21
2

+
1169 2.8(3)

21
2

+
1510 3.2(4)

5066 29
2

+ 25
2

+
905 2.7(3) 0:18(3) �0:01(5) E2

6968 33
2

+ 29
2

+
1521 3.3(2) 0:52(6) �0:12(8) E2

8512 37
2

+ 33
2

+
1543 1.0(1) 0:42(8) �0:05(10) E2

8585 37
2

+ 33
2

+
1618 1.2(2)

14781 53
2

+ 49
2

+
1846 2.2(2) 0:18(3) �0:11(3) E2

17253 53
2

+
2472 0.7(1)

Table 4.7: Table of transitions in 85Y for some of the levels in the level scheme that

do not appear to belong to a band.

4.2.3.1 Yrast Band

Band 3, or the yrast band, has been previously seen up to spin 29=2+.

The new transitions above spin 29=2+ are clearly seen in coincidence with the yrast

sequence. However, some investigation was required to determine the ordering of

these transitions. Two transitions of similar energy, 1825 and 1829 keV, caused some

di�culty in the coincidence analysis, but gates on the 1646 and 1268 keV transitions

separated the two decay paths to reveal the 6361, 6740, and 8007 keV levels. The

ordering of the 1470, 1629, 1829 keV transitions above the 8007 keV level is based on

energy and intensity considerations.

Angular distributions imply that the 1447, 1646, and 1470 keV transitions

above the 4914 keV level are stretched E2 transitions, allowing for de�nite spin and
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parity assignments for the 6361, 6740, 8007, and 9478 keV levels. Statistics were not

good enough to produce meaningful angular distributions for transitions above the

9478 keV level.

4.2.3.2 Bands 1, 2 and Possible New Band

We have established 17 new transitions and 7 new levels that belong to

bands 1, 2, and possibly another band with a band head energy of E = 4160 keV.

Most of the spins and parities of these levels could be determined with certainty.

The spin and parity of the two lowest levels in band 1 are certain because of the

stretched E2 transitions 1193, 1089 keV. The spin and parity of the 6740 keV level in

band 1 is certain because of the stretched E2 transitions 1268, 1825 keV. Only two

levels, with energies 5449 and 4160 keV, connect the I=33=2+ state at 6740 keV to the

I=21=2
+
state at 2650 keV. Thus, the three connecting transitions, which remove 6�h

of angular momentum from the nucleus, must each remove 2�h of angular momentum.

So the 1291, 1288, and 1510 keV transitions must be stretched E2, and the 5449,

4160 keV levels must have spin-parities of 29=2
+
and 25=2

+
respectively. Also, since

angular distributions show that the 905 keV transition is a stretched E2, we can

assign spin-parity of 29=2
+
to the 5066 keV level.

Angular distributions show that the 742, 281, 931, and 310 keV transitions

remove 1�h of angular momentum from the nucleus. This makes the spins of band 2

certain. However, the partity can not be determined. For example, from Fig. 4.17, the

angular distribution of the 742 keV line includes few angles near 0� and 180�, making

it di�cult for us to be certain whether the transition is E1 or a mixed M1=E2
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transition. So we adopt the assignment from Diller et al. [21] for the 3392 keV level

in band 2. Diller et al. found the 742 and 281 keV transitions to be mixed M1=E2,

and thus the parity of the 23=2 level to be positive. The other two states in band 2

were tentatively labeled as having positive parity.

4.2.3.3 Negative Parity Bands 4 and 5

The details of the level structure of bands 4 and 5 was di�cult to resolve

using single and double coincidence analysis. Because of the large number of multi-

plets and the non-collective nature of the bands, any spectrum resulting from a single

or double gate would include nearly all of the other transitions in these bands. Also

because of the irregular structure of these bands, comparison with a rotational band

structure could not aid in sorting out the transitions of these bands. As a result,

we have made minimal changes to the negative-parity levels presented by Diller et

al. [21]. (We have adopted the assignment of negative parity to this band by Diller

et al. [30], discussed in section 4.2.4). One change involved the removal of a 623 keV

transition. Coincidence data show that the 623 keV transition is a doublet. The level

scheme presented in this work places only one 623 keV line, between the 2927 and

2304 keV levels of band 4. The previous level scheme placed a second 623 keV line

that fed into the 4363 keV level. In the present analysis we were able to verify the

existence, but not the placement of a second 623 keV line.

In addition to the transitions shown in the level scheme, transitions of en-

ergies 260, 466, 594, 600, 610, 623, 735, 758, 874, 904, 990, 1460 and 1506 keV are

also seen in coincidence with bands 4 and 5. They are not placed in the level scheme
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because of the di�culties with the coincidence analysis. Angular distribution analy-

sis veri�ed the spin assignments of levels at energies of 1180, 1649, 2304, 2927, 3306,

4006, 4363, 5025, and 5439 keV in bands 4 and 5 and the levels connecting these

bands to the yrast state. The 474 keV state is labeled tentatively as 9=2
+
because

of the low intensity of the 454 and 706 keV transitions. As argued by Diller et al.,

the relatively long lifetimes of the 2304 and 2927 keV levels suggest these states are

negative-parity [30], but one cannot exclude the possibility that these transitions are

of retarded M1 character.

4.2.3.4 Band 6

We report here band 6 as a tentative superdeformed band. Its -ray energies

and lack of connecting transitions to other bands is typical of a superdeformed band

in the mass 80 region. Spectra resulting from single gates on transitions in band 6

generally contain peaks not much larger than the background. Spectra resulting from

double gates on these transitions contained too few counts to discern peaks.

Figure 4.18 shows the spectrum resulting from the sum of single-gated spec-

tra of all the transitions in band 6. A fraction of the total projection is subtracted

to compare transitions fed from band 6 (positive peaks) to impurities and transitions

that are not fed by band 6 (negative peaks). From this spectrum we can conclude

that this band feeds primarily into the yrast 29=2+ state above the 1241 keV transi-

tion. Due to the low intensity of these transitions, we are only reporting this band as

tentative. To be certain of this band, an experiment focused on populating high spin

states in 85Y would be needed.
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Figure 4.19: Decay sequence for the (�; �) = (+;+) states drawn to illustrate the

forking. Path 1 indicates the entire decay sequence that passes through band 1, and

path 2 indicates the entire decay sequence through the yrast states in band 3.

4.2.4 Discussion

We �rst focus on the decay of the two positive parity positive signature bands

1 and 3. For this discussion it is useful to represent the decay of these bands in an

alternative way as shown in Fig. 4.19. A notable feature of this decay is the occurrence

of forking. One notes that in the interval between I� = 17=2+ and 37=2+ there are

two sequences of states with identical spin and parity but di�erent excitation energies.

A very similar forking exists in the isotone 87Nb [31]. The fork at I� = 17=2+ extends
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to I� = 29=2
+
, but no direct transition has been established between the 29=2

+
state

and the 33=2
+
member of the yrast band. Forking has also been established in even-

even nuclei in this mass region, namely 84Sr [32], 78Sr and 82Zr [33]. In the latter two

nuclei, Rudolph et al. argue that forking may be explainable (in the cranking model)

by the existence of two competing shapes: prolate and prolate-triaxial. We will show

in section 4.2.4.2 that in 85Y, these two forks are associated with collective prolate

and oblate deformations. The states below the 21=2+ states are consistent with non-

collective, near spherical rotation because the band structure does not resemble that

of a rotor and has a very small moment of inertia (see Sec. 4.2.4.1).

The negative parity bands have been previously analyzed by Diller et al. [30]

who pointed out the similarity in the transition strengths between the negative parity

states in 84Sr and 85Y. Neither the present work nor that of reference [30] provide

direct evidence for the parity of these bands. The parity assignment is based on the

similarity between these bands and the negative parity bands in 84Sr[32]. In the case

of 84Sr the parity could be assigned on the basis of g-factor determinations, which

suggest the intrinsic structure of these states to be �(g19=2(p3=2; f5=2)
�1). For 85Y, the

additional proton would occupy the g9=2 orbital, maintaining the negative parity of

the bands.

4.2.4.1 Cranking Model Analysis

A cranking-model analysis [34] was performed for the two positive parity

positive signature decay paths 1 and 3. Figure 4.20a shows the kinematic moment of

inertia =(1) and experimental Routhians as a function of rotational frequency along
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(dashed), showing the backbends in each case.
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these two paths. The kinematic moment of inertia along path 3 shows �rst an upbend

at �h! � 0:4 MeV followed by a second upbend at �h! � 0:8 MeV. Changes similar

to the �rst upbend have been observed in the isotones 83Rb [35] and 87Nb [31] where

the proton number di�ers by two from that of 85Y. It has been argued [33] that this

change in 83Rb and 87Nb may be the result of the alignment of a pair of neutrons, a

change in shape, or a combination of the two. The change in =(1) at the �rst upbend

(path 3) exceeds that associated with the second upbend. The =(1) corresponding to

path 1 behaves very di�erently; the �rst upbend occurs at �h! � 0:5 MeV which is

immediately followed by an upbend at �h! � 0:6 MeV. The change in =(1) at the lower

frequency is considerably smaller than that of the higher frequency. The experimental

Routhians shown in Fig. 4.20b re�ect the same behavior. The �rst upbend in path

3 is associated with a large change in slope (alignment) while the second upbend

involves a smaller change in alignment. Along path 1, the �rst change in slope occurs

at a higher frequency and is immediately followed by another large change in slope.

States in the yrast sequence between �h! > 0:4 MeV and �h! < 0:8 MeV (band 3) have

a nearly constant moment of inertia indicative of collective rotation.

4.2.4.2 Cranked mean-�eld calculations

Comparisons were made with cranked-shell-model calculations using aWoods-

Saxon potential, monopole pairing, and Strutinsky shell correction. A more detailed

description of the model may be found in references [29, 36].

Calculated total Routhian surfaces (Fig. 4.21) show �ve minima labeled `a'

through `e' that exist over varying ranges of rotational frequencies. These minima
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Figure 4.22: =(1) plot comparing experiment to HFBC calculations for lowest energy

(�; �) = (+;+) prolate deformation (�2 = 0:27,  = �11, �4 = 0:010). The circles

indicate the data for band 3, the solid line indicates theory. The long and medium

dashed lines represent the theoretical proton and neutron contributions respectively.

The theoretical calculations are for 0:4 MeV< �h! < 0:7 MeV.

correspond to deformations of (a) near-spherical (�2 < 0:05,  � 0�), (b) prolate

collective (�2 � 0:27,  � 0�), (c) oblate collective (�2 � 0:25,  � �60�). At

�h! > 0:7 MeV two additional prolate collective minima exist at (d) �2 � 0:40,  � 0�

and (e) �2 � 0:60,  � 0�.

In this model, pairing was treated self-consistently at all frequencies. This

makes it possible to compare theoretical =(1) to experiment. Previous work has shown

that such comparisons are useful in determining shapes and shape changes [36, 37, 38].

Comparisons of the properties of the states belonging to bands 3 and 1 with

model predictions show reasonable agreement with the assignment of prolate and

oblate collective shapes, respectively. Figure 4.22 shows a plot of both the experi-

mental =(1) for band 3 and the predicted =(1) of the collective prolate shape corre-
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(�; �) = (+;+) oblate deformation (�2 = 0:27,  = �57, �4 = 0:010). The circles

represent data along decay path 1, the solid line indicates theory. The long and

medium dashed lines represent the proton and ne utron contributions respectively.

sponding to deformation b in Fig. 4.21. Due to shape change between near spherical

at low spins and prolate collective, the model for the prolate collective shape does not

reproduce the experimental points at low frequencies or the upbend at �h! < 0:4 MeV.

Between the two upbends (i.e., in the frequency range of 0:4MeV< �h! < 0:7 MeV),

the model is in agreement with experiment. The frequency of the second upbend at

�h! � 0:7 MeV is predicted slightly lower and not as sharp as the experimental up-

bend. (It should be noted that calculations of =(1) as a function of ! can only produce

upbends, not backbends.) Since the calculated =(1) does not match the experimental

values below the �rst backbend or above the second backbend, we suggest that the

shape is only prolate along path 3 between �h! = 0:4 and 0:7 MeV.
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Figure 4.23 compares a plot of the experimental =(1) for decay path 1 with

the predicted =(1) corresponding to the collective oblate shape corresponding to de-

formation `c' in Fig. 4.21. The calculation for this deformation closely reproduces

the experimental data for path 1 above frequencies of about 0.2 MeV. Both the ex-

perimental and calculated =(1) values upbend at �h! � 0:5 MeV followed by a second

upbend at �h! � 0:6 MeV. The magnitudes of each of these upbends are also pre-

dicted quite well. We thus suggest that the shape through path 1 remains oblate for

all but the few lowest-energy states which, as mentioned before, we believe to be near

spherical.

Using these comparisons for prolate and oblate shapes, the shape evolution

for the positive parity, positive signature forking can be understood (as diagramed

in Fig. 4.19). Below the �rst backbend, the shape evolves from near spherical to

oblate collective shape. During this evolution it forks into a prolate shape (yrast),

and an oblate shape (band 1). Above �h! � 0:8 MeV the prolate minima disappears,

and the oblate shape becomes yrast. The disappearance of the prolate minima is

reproduced in the TRS plots (Fig. 4.21) where the prolate deformation disappears

around �h! � 0:6 MeV.

4.2.4.3 Shape mixing and the decay out of the 37=2+ state

The forking of the decay out of the 37=2+ state into the oblate and prolate

33=2+ states at 6740 and 6361 keV requires some discussion. It could possibly be

explained by strong mixing in the 37=2
+
state between the two di�erent shapes. This

is consistent with the total Routhian surface at �h! = 0:7 MeV which show an oblate
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Figure 4.24: Schematic branching scheme. Note that the states  and  0 are very

close in energy. Their separation is exaggerated in the �gure.

minimum (c) at approximately -3.5 MeV and a very soft, plateau-like prolate mini-

mum (d) at approximately -2.5 MeV. The large signature splitting of single particle

Routhians at approximately 0.7 MeV (see Fig. 4.24) indicates signi�cant mixing be-

tween the g9=2 orbitals of both protons and neutrons which may allow shape mixing

to occur.

In the following we outline a schematic shape mixing model for this decay.

Let

 = ajoi+ bjpi (4.2)

and

 0 = �bjoi + ajpi (4.3)

describe two shape-mixed and mutually orthogonal 37=2
+
states. The kets joi and

jpi represent oblate and prolate shape eigenstates, and a and b are normalized mixing

amplitudes (a2 + b2 = 1). In order to obtain appreciable mixing it is necessary

that the two 37=2+ states are close in energy. The separation is presumably less
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than the energy resolution of the  ray detectors, consistent with the fact that only

a single 37=2
+
state could be identi�ed. We assume that the two wave functions

above the states  and  0 are pure joi and those below pure joi and pure jpi as

indicated in Fig. 4.24. From these assumptions it is possible to calculate the relative

strength of the 1267 and 1646 decays out of the 37=2
+
states in terms of the E2

matrix elements hojE2joi and hpjE2jpi which in turn are proportional to the oblate

and prolate intrinsic quadrupole moments Qo and Qp. Matrix elements of the form

hojE2jpi are neglected since they are generally expected to be very small based on

the smallness of typical overlap integrals between the many-body wave functions.

Thus the relative population strengths of states  and  0 are a2Q2
o and b2Q2

o, and

the total reduced transition probabilities into the oblate and prolate 33=2+ states

are proportional to (a4 + b4)Q4
o and 2a2b2Q2

oQ
2
p. The ratio of the two transition

probabilities B(E2; 1267)=B(E2; 1646) can be expressed in terms of the ratios � =

(a=b)2 and � = (Qo=Qp)
2:

B(E2; 1267)

B(E2; 1646)
=
�2 + 1

2�
� (4.4)

From the experimental relative intensities 4.1 and 6.1 of the 1267 and 1646 keV

transitions one can extract the ratio of the reduced transition probability

B(E2; 1267)

B(E2; 1646)
=

4:1=12675

6:1=16465
= 2:49 (4.5)

The Routhian surfaces suggest that the magnitude of �2 for the oblate and prolate

shapes are about the same (i.e. �2 � 0:27), hence Q2
o � Q2

p and � � 1. Thus it is

possible to determine the ratio a2=b2 = � = 4:77 (a2 = 827; b2 = 0:173).



Chapter 5

SUMMARY

High spin structure of 80Sr and 85Y have been studied using high fold de-

tector arrays, Gammasphere and Microball, and high resolution  ray spectroscopy.

Comparing the data to a cranked mean-�eld with pairing calculations, the shapes and

shape changes for di�erent values of angular momentum were investigated for each

isotope.

In 80Sr, cranked shell-model calculations show good agreement with experi-

mental results, indicating a shape change from prolate collective to oblate collective.

Lifetimes do not indicate a loss of collectivity in the spin range measured, however

some evidence for shape evolution was seen at higher spins.

In 85Y, the nuclear shape evolved from a spherical shape, at low excitations,

to prolate and oblate shapes. At I� = 17=2
+
, the yrast band becomes prolate, and an

oblate band branches from the yrast band. The oblate band then becomes yrast at

I� = 37=2+, and the prolate band seems to disappear with a visible transition to the

oblate band. A tentative new superdeformed band was identi�ed. To be certain of

this band, an experiment focused on the production of high spin states in 85Y would

be needed.
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