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The nature of the lunar crust provides crucial information on the Moon’s 
origin and subsequent evolution. Because the crust is composed largely 
of anorthositic materials (1), its average thickness is key to determining 
the bulk silicate composition of the Moon (2, 3), and consequently, 
whether the Moon was derived largely from Earth materials or from the 
giant impactor that is believed to have formed the Earth-Moon system 
(4, 5). Following formation, the crust of the Moon suffered the conse-
quences of 4.5 billion years of impact cratering. The Moon is the nearest 
and most accessible planetary body to study the largest of these cata-
strophic events, which were common during early solar system evolution 
(6, 7). In addition, it is an ideal laboratory for investigating the cumula-
tive effects of the more frequent smaller impact events. Spatial variations 
in the Moon’s gravity field are reflective of subsurface density varia-
tions, and the high-resolution measurements provided by NASA’s Gravi-
ty Recovery and Interior Laboratory (GRAIL) mission (8) are 
particularly useful for investigating these issues. 

Previous gravity investigations of the Moon have made use of data 
derived from radio tracking of orbiting spacecraft, but these studies were 
frustrated by the low and uneven spatial resolution of the available gravi-
ty models (9, 10). GRAIL consists of two co-orbiting spacecraft that are 
obtaining continuous high-resolution gravity measurements by 
intersatellite ranging over both the near- and far-side hemispheres of 
Earth’s natural satellite (8). Gravity models at the end of the primary 
mission resolve wavelengths as fine as 26 km, which is more than a 

factor of 4 times less than any previous 
global model. The mass anomalies 
associated with the Moon’s surface 
topography are one of the most promi-
nent signals seen by GRAIL (11), and 
because the measured gravity signal at 
short wavelengths is not affected by 
the compensating effects of lithospher-
ic flexure, these data offer an oppor-
tunity to determine unambiguously the 
bulk density of the lunar crust. The 
density of the crust is a fundamental 
property required for geophysical stud-
ies of the Moon, and it also provides 
important information on crustal com-
position over depth scales that are 
greater than those of most other remote 
sensing techniques. 

The deflection of the crust-mantle 
interface in response to surface loads 
makes only a negligible contribution to 
the observed gravity field beyond 
spherical harmonic degree and order 
150 (12). At these wavelengths, if the 
gravitational contribution of the sur-
face relief were removed with the cor-
rect reduction density, the remaining 
signal (the Bouguer anomaly) would 
be zero if there were no other density 
anomalies present in the crust. An 
estimate of the crustal density can be 
obtained by minimizing the correlation 
between surface topography and 
Bouguer gravity. To exclude compli-
cating flexural signals, and to interpret 
only that portion of the gravity field 
that is well resolved, we first filtered 
the gravity and topography to include 
spherical harmonic degrees between 

150 and 310. Gravity and topography over the lunar maria, areas of gen-
erally low elevation resurfaced by high density basaltic lava flows, were 
excluded from analysis, because their presence would bias the bulk den-
sity determination. 

For our analyses, the correlation coefficient of the Bouguer gravity 
and surface topography was minimized using data within circles that 
span 12° of latitude. Analyses were excluded when more than 5% of the 
region was covered by mare basalt, and when the minimum correlation 
coefficient fell outside the 95% confidence limits as estimated from 
Monte Carlo simulations that utilized the gravity coefficient uncertain-
ties. The average density of the highlands crust was found to be 2550 kg 
m−3, and individual density uncertainties were on average 18 kg m−3. As 
shown in Fig. 1, substantial lateral variations in crustal density exist with 
amplitudes of ±250 kg m−3. The largest positive excursions are associat-
ed with the 2000-km diameter South Pole-Aitken basin on the Moon’s 
farside hemisphere, a region that has been shown by remote sensing data 
to be composed of rocks that are considerably more mafic, and thus 
denser, than the surrounding anorthositic highlands (13). Extensive re-
gions with densities lower than average are found surrounding the im-
pact basins Orientale and Moscoviense, which are the two largest young 
impact basins on the Moon’s farside hemisphere. The bulk density de-
terminations are robust to changes in size of the analysis region by a 
factor of two, and are robust to changes in the spectral filter limits by 
more than ±50 in harmonic degree. Nearly identical bulk densities are 
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High-resolution gravity data obtained from the dual Gravity Recovery and Interior 
Laboratory (GRAIL) spacecraft show that the bulk density of the Moon’s highlands 
crust is 2550 kg m−3, substantially lower than generally assumed. When combined 
with remote sensing and sample data, this density implies an average crustal 
porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal 
porosity correlate with the largest impact basins, whereas lateral variations in 
crustal density correlate with crustal composition. The low bulk crustal density 
allows construction of a global crustal thickness model that satisfies the Apollo 
seismic constraints, and with an average crustal thickness between 34 and 43 km, 
the bulk refractory element composition of the Moon is not required to be enriched 
with respect to that of Earth. 
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obtained with both a global and localized spectral admittance approach 
(figs. S6 and S7). 

The bulk crustal densities obtained from GRAIL are considerably 
lower than the values of 2800 to 2900 kg m−3 that are typically adopted 
for geophysical models of anorthositic crustal materials (14). We attrib-
ute the low densities to impact-induced fractures and brecciation. From 
an empirical relation between the grain density of lunar rocks and their 
concentration of FeO and TiO2 (15), along with surface elemental abun-
dances derived from gamma-ray spectroscopy (16), grain densities of 
lunar surface materials may be estimated globally with a precision and 
spatial resolution that are comparable to those of the GRAIL bulk densi-
ty measurements (fig. S3). If the surface composition of the Moon is 
representative of the underlying crust, the implied porosity is on average 
12% and varies regionally from about 4 to 21% (Fig. 2). These values 
are consistent with, though somewhat larger than, estimates made from 
earlier longer-wavelength gravity field observations and a lithospheric 
flexure model (15). The crustal porosities in the interiors of many impact 
basins are lower than their surroundings, consistent with a reduction in 
pore space by high post-impact temperatures, which can exceed the soli-
dus temperature. In contrast, the porosities immediately exterior to many 
basins are higher than their surroundings, a result consistent with the 
generation of increased porosity by the ballistic deposition of impact 
ejecta and the passage of impact-generated shock waves. 

If the crustal density were constant at all depths greater than the low-
est level of surface elevation, our bulk density estimates would represent 
an average over the depths sampled by the topographic relief, on average 
about 4 km. Because the deeper crust would not generate lateral gravity 
variations under such a scenario, this depth should be considered a min-
imum estimate for the depth scale of the GRAIL density determinations. 
If crustal porosity were solely a function of depth below the surface, the 
depth scale could be constrained using the relationship between gravity 
and topography in the spectral domain, since deep and short-wavelength 
mass anomalies are attenuated with altitude faster than shallower and 
longer-wavelength anomalies. We investigated two models: one in 
which the porosity decreases exponentially with depth below the surface, 
and another in which a porous layer of constant thickness and constant 
porosity overlies a non-porous basement (12). The upper bound on both 
depth scales, at one standard deviation or 1-σ, is largely unconstrained, 
with values greater than 30 km able to fit the observations in most re-
gions. Lower bounds at 1-σ for the two depth scales were constrained to 
lie between about 0 and 31 km. These results imply that at least some 
regions of the highlands have substantial porosity extending to depths of 
tens of kilometers, and perhaps into the uppermost mantle. 

Our density and porosity estimates are broadly consistent with labor-
atory measurements of lunar feldspathic meteorites and feldspathic rocks 
collected during the Apollo missions. The average bulk density of the 
most reliable of these measurements is 2580 ± 170 kg m−3 (12, 17), and 
the porosities of these samples vary from about 2 to 22% and have an 
average of 8.6 ± 5.3%. Ordinary chondrite meteorites have a similar 
range of porosities as the lunar samples, a result of impact-induced 
microfractures (18). A 1.5-km drill core in the Chicxulub impact basin 
on Earth shows that impact deposits have porosities between 5 and 24%, 
whereas the basement rocks contain porosities up to 21% (19). Gravity 
data over the Ries, Tvären, and Granby terrestrial impact craters (with 
diameters of 23, 3, and 2 km) imply values of 10-15% excess porosity 1 
km below the surface (20, 21), and for the Ries, about 7% porosity at 2 
km depth. Whereas the impact-induced porosities associated with the 
terrestrial craters are a result of individual events, on the Moon, each 
region of the crust has been affected by numerous impacts. 

Pore closure at depth within the Moon is likely to occur by viscous 
deformation at elevated temperatures; this decrease occurs over a narrow 
depth interval (<5 km) (fig. S12) because of the strong temperature-
dependence of viscosity (22). From representative temperature gradients 

over 4 billion years, and taking into account the reduced thermal conduc-
tivity of porous rock, this transition depth is predicted to lie between 40 
and 85 km below the surface, depending on the rheology and heat fluxes 
assumed. Where the crust is thinner than these values, porosity could 
exist in the underlying mantle. S-wave velocity profiles derived from the 
Apollo seismic data (23) suggest that porosity extends to depths up to 15 
km below the crust-mantle interface, consistent with this interpretation. 

With our constraints on crustal density and porosity, we constructed 
a global crustal thickness model from GRAIL gravity and Lunar Recon-
naissance Orbiter (LRO) topography (24) data. Our model accounts for 
the gravitational signatures of the surface relief, relief along the crust-
mantle interface, and the signal that arises from lateral variations in crus-
tal grain density as predicted by remote sensing data (12). Crustal densi-
ties beneath the mare basalts were extrapolated from the surrounding 
highland values, and because we neglect the comparatively thin surficial 
layer of dense basalt (14), the total crustal thicknesses will be biased 
locally, but by no more than a few kilometers. As constraints to our 
model, we used seismically determined thicknesses of either 30 (23) or 
38 (25) km near the Apollo 12 and 14 landing sites, and we assumed a 
minimum crustal thickness of less than 1 km because at least one of the 
giant impact basins should have excavated through the entire crust (14, 
26). Given a porosity model of the crust, we obtained a single model that 
fits the observations by varying the average crustal thickness and mantle 
density. Because some of the short-wavelength gravity signal is the re-
sult of unmodeled crustal signals, our inversions make use of a spectral 
low-pass filter (27) near degree 80, yielding a spatial resolution that is 
60% better than previous models (28). Remote sensing data of impact 
crater central peaks imply some subsurface compositional variability but 
do not require broad compositional layering (29), at least consistent with 
our use of a model that is uniform in composition with depth. 

For a first set of models, we assumed that porosity was a function of 
depth below the surface. With a mantle grain density of 3360 kg m−3 
(30), it is not possible to fit simultaneously the seismic and minimum 
thickness constraints as a result of the relatively small density contrast at 
the crust-mantle interface (12). For a second set of models, we assumed 
that the porosity of the entire crust was constant with depth. With 12% 
porosity and a 30-km crustal thickness near the Apollo 12 and 14 land-
ing sites, a solution is found with an average crustal thickness of 34 km 
and a mantle density of 3220 kg m−3 (Fig. 3). For a 38-km crustal-
thickness constraint, values of 43 km and 3150 kg m−3 are found, respec-
tively. By reducing the porosity to 7%, the mantle density increases by 
about 150 kg m−3, but the average crustal thickness remains unchanged. 
Identical average crustal thicknesses are obtained for a crustal density 
map extrapolated from Fig. 1. The mantle densities should be considered 
representative to the greatest depths of the base of the crust (∼ 80 km 
below the surface), and if the grain density of mantle materials is 3360 
kg m−3, the uppermost mantle could have a porosity between 0 and 6%, 
consistent with our porosity evolution model (12). 

Before GRAIL, the average thickness of the Moon’s crust was 
thought to be close to 50 km (14, 28) (12). Published estimates for the 
bulk silicate abundance of the refractory element aluminum, as summa-
rized in table 1 of Taylor et. al (3), fall into two categories: One group 
indicates that the Moon contains the same abundance as Earth, whereas 
the other suggests at least a 50% enrichment. We used our average crus-
tal thickness with assumptions on crustal composition that maximize of 
the total Al2O3 in the crust to test the limits of the refractory enrichment 
hypothesis. If the lunar crust consists of an upper megaregolith layer 5-
km thick containing 28 wt.% Al2O3 (3), a value based largely on lunar 
highland meteorite compositions, with the remainder being nearly pure 
anorthosite, 34 wt.% Al2O3 (1), we calculate that a 34-km-thick crust 
contributes 1.7 wt.% to the total bulk silicate abundance of Al2O3 for a 
crustal porosity of 7%. A 43-km-thick crust contributes 2.1 wt.%. The 
inclusion of more mafic materials in the lower crust would act to reduce 
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the total abundance of aluminum in the crust. In order for bulk lunar 
silicate aluminum abundances to match those for Earth (4 wt.% Al2O3), 
the lunar mantle would need to contain 1.9-2.4 wt.% Al2O3, whereas a 
50% enrichment in refractory elements would require 4.1-4.5 wt.% 
Al2O3. Petrologic assessments indicate mantle Al2O3 abundances close 
to 1-2 wt.% (31), supporting a lunar refractory element composition 
similar to that of Earth. Estimates of Al2O3 derived from modeling the 
Apollo seismic data have a broad range, from 2.3-3.1 wt.% for the entire 
mantle (32), to 2.0 to 6.7 wt.% for the upper and lower mantle (33), re-
spectively. Although further constraints on the composition of the deep 
lunar mantle are needed, the modest contribution to the bulk lunar Al2O3 
from the crust does not require the Moon to be enriched in refractory 
elements. 

Crustal thickness variations on the Moon are dominated by impact 
basins with diameters from 200 to 2000 km. With a thinner crust, it be-
comes increasingly probable that several of the largest impact events 
excavated through the entire crustal column and into the mantle (14). 
Two impact basins have interior thicknesses near zero (Moscoviense and 
Crisium), and three others have thicknesses that are less than 5 km 
(Humboldtianum, Apollo, and Poincaré). Remote sensing data show 
atypical exposures of olivine-rich materials surrounding some lunar 
impact basins that could represent an admixture of crustal materials with 
excavated mantle materials (26), and the most prominent of these are 
associated with the Crisium, Moscoviense, and Humboldtianum basins. 
Our crustal thickness model strengthens the hypothesis that these impact 
events excavated into the mantle. 

Because the crust of the Moon has experienced only limited volcanic 
modification, and in addition has not experienced aqueous or aeolian 
erosion, the Moon is an ideal recorder of processes that must have af-
fected the crusts of all terrestrial planets early in their evolution. Large 
impact events were common in the first billion years of solar system 
history, and the crusts of the terrestrial planets would have been frac-
tured to great depths, as was the Moon. For Earth and Mars, this porosity 
could have hosted substantial quantities of ground water over geologic 
time (34). For planets generally lacking groundwater, such as Mercury, 
crustal porosity may have sharply reduced the effective thermal conduc-
tivity, hindering the escape of heat to the surface and affecting the plan-
et’s thermal and magmatic evolution (35). 
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Fig. 1. Bulk density of the lunar crust from gravity and topography data. At each point on a grid of 60-km spacing, the bulk 
density was calculated within circles of 360 km diameter(spanning 12° of latitude). White denotes regions that were not 
analyzed, thin lines outline the maria, and solid circles correspond to prominent impact basins, whose diameters are taken as 
the region of crustal thinning in Fig. 3. The largest farside basin is the South Pole-Aitken basin. Data are presented in two 
Lambert azimuthal equal-area projections centered over the near- (left) and far- side (right) hemispheres, with each image 
covering 75% of the lunar surface, and with grid lines spaced every 30°. Prominent impact basins are annotated in Fig. 3. 

Fig. 2. Porosity of the lunar crust, using bulk density from GRAIL and grain density from sample and remote-sensing analyses. 
Image format is the same as in Fig. 1. 
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Fig. 3. Crustal thickness of the Moon from GRAIL gravity and LRO topography. With a crustal porosity of 12% and a mantle 
density of 3220 kg m−3, the minimum crustal thickness is less than 1 km in the interior of the farside basin Moscoviense, and 
the thickness at the Apollo 12 and 14 landing sites is 30 km. Image format is the same as in Fig. 1, and each image is overlain 
by a shaded relief map derived from surface topography. 
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