How Asymmetric Dark Matter May Alter The Conditions for Stardom

ANDREW R. ZENTNER PITT-PACC UNIVERSITY OF PITTSBURGH

PRD 80, 063501 [ARXIV:0907.3448] PRD 84, 101302 [ARXIV:1110.5919]

OUTLINE

1. Dark Matter Status Report 2. Dark Matter in Stars **3. Low-Mass Stars as Possibly Interesting Dark Matter Laboratories** 4. Example results for the influence of "Asymmetric" Dark Matter on Very Low-Mass stars and Brown Dwarfs

DARK MATTER

HTTP://LAMBDA.GSFC.GOV

MICROWAVE BACKGROUND IMAGE OF THE UNIVERSE 13 BILLION YEARS AGO

NECESSARY TO GROW STRUCTURE

CONTEMPORARY DISTRIBUTION OF GALAXIES

HTTP://IPAC.CALTECH.EDU

Dark Matter: Status Report

DIRECT DETECTION

<

CRESST Collaboration arXiv:1109.0702

NDIRECT DETECTION

Geringer-Sameth & Koushiappas [arXiv:1108.2914] and Fermi collab. [arXiv:1108.3546]

SIGNATURES OF LIGHT DARK MATTER IN STARS

BACK TO PRESS & SPERGEL 1985, FAULKNER & GILLILAND 1985, WHO STUDIED THE SUN

> **Approaching Dark Matter Particle**

TWO EQUATIONS

• Standard wimp capture rates of dark matter in stars:

$$C_{\rm DM} \propto \rho_{\rm DM} \sigma_{\rm DM-N} \frac{v_{\rm esc}^2}{v_{\infty}} M_{\star} \sim 10^{22} \,\mathrm{s}^{-1}$$

Stellar Luminosity Scaling with Mass:

$$L \propto M^{3.5}$$

Low-Mass Stars As DM Labs

- For stars, M ∝ R: low-mass stars capture as much DM per unit mass as the Sun!
- 2. L ∝ M^{3.5} : Less energy needs to be moved around to dramatically alter the stellar structure
- 3. Low-mass (≈ 0.1 M_☉) are just hot enough to fuse hydrogen and fusion rates are VERY sensitive to core temperature.
- 4. Astronomical observatories are just becoming capable of taking a census of low-mass stars!

IN THE SUN

LUMINOSITY TRANSPORTED BY DARK MATTER THROUGH Ľ **A** SURFACE BY

RADIAL POSITION, IN UNITS OF STELLAR RADIUS

IN LOW-MASS STAR

RADIAL POSITION, IN UNITS OF STELLAR RADIUS

CORE TEMPERATURE

[10⁶K] **CORE TEMPERATURE**

 $\begin{array}{l} \text{SIMILAR} \\ \text{RESULTS FOR} \\ \text{M}_{x} \sim 7 \text{ GeV}, \\ \\ \sigma^{\text{SI}} \sim 10^{-40} \text{ cm}^{2} \end{array}$

CORE DENSITY [CGS]

EVOLUTION

EVOLUTION

ABUNDANCES

LUMINOSITY [SOLAR LUMINOSITIES]

SUMMARY

• Viable models of Asymmetric Dark Matter may cool the cores of low-mass stars such that they do not become stars at all

 Brown dwarfs will cool significantly more quickly in such models

• Forthcoming astronomical censuses of very lowmass stars (LSST, PannSTARRS, TMT, GMT, JWST, ...) may aid indirect DM identification efforts, stellar evolution may be altered by DM (and perhaps other applications...)