Mixed axion/LSP dark matter: a new paradigm

Howard Baer University of Oklahoma OUTLINE

- ★ SUSY WIMPs: miracle or not?
- \star strong CP problem and PQWW solution
- \star the PQMSSM
- ★ mixed axion/axino CDM
- ★ mixed axion/neutralino CDM
- \star can $f_a \sim M_{GUT}$?

WIMPs: is there a WIMP miracle for SUSY?

- Weakly Interacting Massive Particles
- assume in thermal equil'n in early universe

• Boltzman eq'n:

$$- dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$
• $\Omega h^2 = \frac{s_0}{\rho_c/h^2} \left(\frac{45}{\pi g_*}\right)^{1/2} \frac{x_f}{M_{Pl}} \frac{1}{\langle \sigma v \rangle}$
• $\sim \frac{0.1 \ pb}{\langle \sigma v \rangle} \sim 0.1 \left(\frac{m_{wimp}}{100 \ GeV}\right)^2$

- thermal relic \Rightarrow new physics at $M_{weak}!$
- does this work for SUSY neutralinos?

2

• HB, C. Balazs: JCAP 0305, 006 (2003)

• (numerous other recent χ^2 , MCMC fits to find preferred regions)

General scan over 19 param. MSSM

 \star dimensionful param's defined at M_{GUT}

- $m_{Q_1}, m_{U_1}, m_{D_1}, m_{L_1}, m_{E_1} : 0 \to 3500 \text{ GeV}$
- $m_{Q_3}, m_{U_3}, m_{D_3}, m_{L_3}, m_{E_3}: 0 \to 3500 \text{ GeV}$
- $M_1, M_2, M_3: 0 \to 3500 \text{ GeV}$
- $A_t, A_b, A_\tau : -3500 \rightarrow 3500 \text{ GeV}$
- $m_{H_u}, \ m_{H_d}: 0 \to 3500 \text{ GeV}$
- $\tan\beta:2\to 60$
- $\star m_{\widetilde{W}_1} > 103.5 \text{ GeV}$
- ★ $m_{\widetilde{W}_1} > 91.9$ GeV (wino-like)
- \star $m_h > 111 \text{ GeV}$
- ★ HB, Box, Summy, JHEP 1010:023,2010

5

Why WIMP miracle really is a miracle for SUSY

- histogram of models vs. $\Omega_{\widetilde{Z}_1}h^2$ with $m_{\widetilde{Z}_1}<500~{\rm GeV}$

Gravitinos: spin- $\frac{3}{2}$ partner of graviton

• gravitino problem in generic SUGRA models: overproduction of G followed by late \tilde{G} decay can destroy successful BBN predictions unless $T_R \stackrel{<}{\sim} 10^5$ GeV

Gravitinos as dark matter: again the gravitino problem

• neutralino production in generic SUGRA models: followed by late time $\widetilde{Z}_1 \rightarrow \widetilde{G} + X$ decays can destroy successful BBN predictions:

Howard Baer, PittPAC dark matter meeting, University of Pittsburgh, November 15, 2011

8

Origin of strong CP problem

★ QCD \ni $U(2)_V \times U(2)_A$ global symmetry (2 light quarks)

★ $U(2)_V = SU(2)_I \times U(1)_B$ realized; $U(2)_A$ broken spontaneously

- ★ expect 4 Goldstone bosons: πs and η , but instead $m_{\eta} \gg m_{\pi}$: QCD does not respect somehow $U(1)_A$ (Weinberg)
- ★ t'Hooft resolution: QCD θ vacuum and instantons \Rightarrow theory not $U(1)_A$ symmetric, and $m_\eta \gg m_\pi$ explained
- ★ Generate additional term to QCD Lagrangian: $\mathcal{L} \ni \theta \frac{g_s^2}{32\pi} F_A^{\mu\nu} \tilde{F}_{A\mu\nu}$
 - violates P and T; conserves C
- ★ In addition, weak interactions $\Rightarrow \mathcal{L} \ni Arg \ det M \frac{g_s^2}{32\pi} F_A^{\mu\nu} \tilde{F}_{A\mu\nu}$
 - $\bar{\theta} = \theta + Arg \ det M$

★ experiment: neutron EDM $\Rightarrow \bar{\theta} \stackrel{<}{\sim} 10^{-10}$

 \star How can this be? The strong CP problem

PQWW/KSVZ/DFSZ solution to the strong *CP* problem

- ★ propose new chiral (Peccei-Quinn) symmetry $U_{PQ}(1)$; $U_{PQ}(1)$ spontaneously broken at scale f_a (~ $10^9 10^{12}$ GeV)
 - requires Goldstone boson field a(x), the axion

•
$$\mathcal{L} \ni \frac{1}{2} \partial^{\mu} a \partial_{\mu} a + \left(\frac{a}{f_a} + \bar{\theta}\right) \frac{\alpha_s}{8\pi} F_A^{\mu\nu} \tilde{F}_{A\mu\nu}$$

- $V_{eff} \sim (1 \cos(\bar{\theta} + \frac{a}{f_a}))$
- axion field settles to minimum of potential: $\langle a
 angle = -f_a ar{ heta}$
- offending $F\tilde{F}$ term $\rightarrow 0$; strong CP problem solved!

•
$$m_a^2 = \langle \frac{\partial^2 V_{eff}}{\partial a^2} \rangle$$
 with $m_a \sim 6 \ \mu eV \frac{10^{12} \text{ GeV}}{f_a}$

Axion cosmology

 f_a/N (GeV)

 $m_a^{10^{\overline{4}}}$ (eV)

 10^{1}

 10^{10}

 10^{-3}

 10^{9}

 10^{12}

 10^{-5}

 $\begin{array}{c}
 10^{-1} \\
 0^{-2} \\
 10^{-2}
 \end{array}$ (vacuum mis-alignment)
 $10^{-2} \\
 10^{-3} \\
 10^{-4}
 \end{array}$

10

★ Axion field eq'n of motion: $\theta = a(x)/f_a$

$$- \ddot{\theta} + 3H(T)\dot{\theta} + \frac{1}{f_a^2}\frac{\partial V(\theta)}{\partial \theta} = 0$$

$$-V(\theta) = m_a^2(T)f_a^2(1-\cos\theta)$$

- Solution for T large,
$$m_a(T) \sim 0$$
:
 $\theta = const.$

$$- m_a(T)$$
 turn-on $\sim 1~{
m GeV}$

$$\star$$
 a(x) oscillates,

creates axions with $ec{p}\sim 0$:

production via vacuum mis-alignment

$$\bigstar \ \Omega_a h^2 \sim \frac{1}{2} \left[\frac{6 \times 10^{-6} eV}{m_a} \right]^{7/6} \theta_i^2 h^2$$

Axion microwave cavity searches

★ ongoing searches: ADMX experiment

- Livermore \Rightarrow U Wash.
- Phase I: probe KSVZ for $m_a \sim 10^{-6} 10^{-5} \ eV$
- Phase II: probe DFSZ for $m_a \sim 10^{-6} 10^{-5} \ eV$
- beyond Phase II:
 probe higher values m_a

We also know MSSM (plus gauge singlets) is compelling effective theory between M_{weak} and M_{GUT}

PQMSSM: Axions + SUSY \Rightarrow mixed $a\tilde{a}$ dark matter?

- axino is spin- $\frac{1}{2}$ element of axion supermultiplet (*R*-odd; can be LSP)
 - Raby, Nilles, Kim; Rajagopal, Wilczek, Turner
 - $-\hat{a} = \frac{s+ia}{\sqrt{2}} + i\sqrt{2}\bar{\theta}\tilde{a}_L + i\bar{\theta}\theta_L\mathcal{F}_a$ in 4-comp. notation
- $m_{\tilde{a}} \mod \text{dependent}$: keV $\rightarrow \text{TeV}$
- $\widetilde{Z}_1 \to \widetilde{a}\gamma$
- non-thermal \tilde{a} production via \widetilde{Z}_1 decay:
- axinos inherit neutralino number density
- $\Omega_{\tilde{a}}^{NTP}h^2 = \frac{m_{\tilde{a}}}{m_{\tilde{Z}_1}}\Omega_{\tilde{Z}_1}h^2$: - Covi, Kim, Kim, Roszkowski

Thermally produced axinos

 \star If $T_R < f_a$, then axinos never in thermal equilibrium in early universe

 \star Can still produce \tilde{a} thermally via radiation off particles in thermal equilibrium

★ CKKR, BS, Strumia calculation:

Various leptogenesis scenarios

- WMAP observation: $n_b/s \sim 0.9 \times 10^{-10}$: how to generate?
- SM EW baryogenesis ruled out; SUSY EWB nearly so
- Thermal leptogenesis very attractive but needs $T_R \gtrsim m_{N_1} \gtrsim 2 \times 10^9$ GeV (Buchmuller, Plumacher); Naive conflict with upper bound on T_R from BBN/gravitino problem
- Alternatively, one may have non-thermal leptogenesis where inflaton $\phi \rightarrow N_i N_i$ decay (Lazarides, Shafi; Kumekawa, Moroi, Yanagida)
- additional source of N_i in early universe allows lower T_R :

$$\frac{n_B}{s} \simeq 8.2 \times 10^{-11} \times \left(\frac{T_R}{10^6 \text{ GeV}}\right) \left(\frac{2m_{N_1}}{m_{\phi}}\right) \left(\frac{m_{\nu_3}}{0.05 \text{ eV}}\right) \delta_{eff}$$
(2)

• Also, AD leptogenesis in $\phi = \sqrt{H\ell} D$ -flat direction: wide range of T_R allowed (Dine, Randall, Thomas; Murayama, Yanagida)

mSUGRA model with mixed axion/axino CDM: $m_{\tilde{a}}$ fixed

- ★ $(m_0, m_{1/2}, A_0, \tan\beta, sgn(\mu)) = (1000 \text{ GeV}, 300 \text{ GeV}, 0, 10, +1)$
- $\star \ \Omega_a h^2 + \Omega_{\tilde{a}}^{TP} h^2 + \Omega_{\tilde{a}}^{NTP} h^2 = 0.11$
- \star model with *mainly* axion CDM seems favored!

mSUGRA p-space with mainly axion cold DM

- **★** contours of $\log_{10} T_R$: mSUGRA w/ $\tan \beta = 10$, $A_0 = 0$
- \star $T_R \stackrel{>}{\sim} 10^6$ consistent with non-thermal leptogenesis
- ★ most dis-favored mSUGRA regions with neutralino DM are most favored by mSUGRA with mainly axion DM! (HB, Box, Summy)

Axion/axino relic density in mSUGRA: low fine-tune!

Reconcile thermal leptogenesis with G problem?

★ need $m_{\tilde{G}} \stackrel{>}{\sim} 20 - 30$ TeV to avoid BBN constraints

• Yukawa-unified SUSY, Effective SUSY, AMSB, mirage unification

 \star invoke $a\tilde{a}$ DM with $\tilde{a} = LSP$ to avoid overproduction of Z_1 s

 \star suppress thermal axino overproduction with large $f_a/N \stackrel{>}{\sim} 10^{12}~{
m GeV}$

 \star suppress axion overproduction via misalignment angle $\theta_i \stackrel{<}{\sim} 1$

 \star avoid BBN constraints on late decaying $\widetilde{Z}_1 \to \widetilde{a} + hadrons$

- low rate \widetilde{Z}_1 production $\Omega_{\widetilde{Z}_1} \stackrel{<}{\sim} 0.1$
- bino-like $\widetilde{Z}_1 \to \gamma \widetilde{a}$ with $\tau(\widetilde{Z}_1) \stackrel{<}{\sim} 200$ sec.

 \star Does it work?

BBN constraints on late decaying neutrals (Jedamzik)

 \star results for $m_X = 100 \text{ GeV}$

Scan over PQMSSM parameters for Eff. SUSY model

★ HB, Kraml, Lessa, Sekmen JCAP1011 (2010) 040

 \star (also works well for Mirage Mediation)

What about cosmology of saxion field s(x)?

- ★ HB, Kraml, Lessa, Sekmen [JCAP1104 (2011)039]
- \star saxion production in early universe
 - Thermal production:
 - coherent oscillations:

Saxion decay

• $s \rightarrow gg, \tilde{g}\tilde{g}; s \rightarrow aa$ more model dependent, but may dominate

- $T_s = \text{temp}$ at which saxion entropy injection nearly complete
- $T_s \simeq 0.78 g_*^{-1/4} \sqrt{\Gamma_s M_{Pl}}$

Saxion domination and entropy

- $T_e = \text{temp at which saxion density equals radiation}$
- If $T_s < T_e$, then saxions may dominate universe
- Entropy from saxion decay: $r = S_f/S_i \simeq T_e/T_s$ (Scherrer, Turner)

Dilution of relics due to saxion decay

- If r > 1, saxions can dominate universe
- Entropy injection may dilute relics (including baryon asymmetry!)
- Beware BBN constraints on late decaying particles (Jedamzik)
- Must calculate relic abundances in RD, MD or DPD universe

• Yes, but need $m_s \sim 10 - 50$ TeV (HB, A. Lessa, JHEP1106 (2011) 027)

What if $m_{\tilde{a}} > m_{\widetilde{Z}_1}$ so $\widetilde{Z}_1 = LSP$?

- Expect mixed axion/neutralino CDM: which will dominate?
- Neutralinos produced thermally as usual (RD, MD or DD universe)
- Axino production and decay (e.g. $\tilde{a} \rightarrow \tilde{Z}_1 \gamma$) will augment neutralino production.
- Decay produced \widetilde{Z}_1 s at temp $T_D = \sqrt{\Gamma_{\tilde{a}} M_P} / (\pi^2 g_*(T_D) / 90)^{1/4}$ can re-annihilate if $\langle \sigma v \rangle n_{\widetilde{Z}_1}(T_D) > H(T_D)$
- Axions produced as usual via vacuum misalignment (but evaluate in RD, MD or DD universe); can be diluted by entropy from axino decay
- Neglecting saxions, expect to work best for models with too low of usual thermal abundance (wino-like or higgsino-like neutralinos)
- HB, Lessa, Rajagopalan, Sreethawong, JCAP1106 (2011) 031

\widetilde{Z}_1 = wino from gaugino AMSB model

• Expect mixed axion/neutralino CDM: which will dominate?

\tilde{Z}_1 = wino from gaugino AMSB model

In case $Z_1 = wino$ from AMSB, see at Xe-100, 1-ton

- Assume CDM is wino dominated
- Distinct lower limit to $\sigma_{SI}(\widetilde{Z}_1p)$ unlike SUGRA
- HB, Demisek, Rajagopalan, Summy, JCAP1007 (2010) 014

Howard Baer, PittPAC dark matter meeting, University of Pittsburgh, November 15, 2011 32

Coupled Boltzmann calculation of mixed *a/bino* **CDM**

- Include $\langle \sigma v \rangle(T)$
- Include neutralino production/entropy injection from both axino/saxion decay
- HB, A. Lessa, W. Sreethawong, arXiv:1110.2491 (2011)

Mixed *a*/*bino* **CDM: coupled Boltzmann calculation**

- saxion entropy versus gluino injection
- only BBN challenged points have low enough relic density

Mixed *a/bino* **CDM:** *A*-funnel

- can allow $f_a \sim 10^{14} 10^{15} {\rm ~GeV!}$
- DM tends to be neutralino rather than axion dominated at large f_a

Howard Baer, PittPAC dark matter meeting, University of Pittsburgh, November 15, 2011 35

Mixed *a/wino* **CDM: AMSB**

- can allow $f_a \sim 10^{14} 10^{15} \text{ GeV!}$
- either neutralino or axion domination possible

Mixed $a/\tilde{b} - \tilde{h}$ CDM: focus point

- can allow $f_a \sim 10^{14} 10^{15} \text{ GeV!}$
- DM tends to be neutralino rather than axion dominated at large f_a

Conclusions

★ SUSY WIMP-only CDM suffers 3 problems:

- too much or too little CDM; \tilde{G} problem; strong CP problem
- **\star** PQ strong CP solution + SUSY: need both
- **\star** mixed axion/axino CDM if \tilde{a} is LSP
- \star then low fine-tuning of $\Omega_{a\tilde{a}}h^2$
- ★ $T_R \sim 10^6 10^{11}$ possible:
 - solve gravitino problem if $m_{\tilde{G}} \stackrel{>}{\sim} 5~{\rm TeV}$
 - allow for non-thermal (possibly thermal) leptogenesis
- ★ The case $f_a \sim M_{GUT}$ allowed for mixed $a\tilde{a}$ DM
- **\star** Mixed $a\widetilde{Z}_1$ CDM: wino or higgsino DM enhanced by \widetilde{a} , s decay
- ★ Mixed $a\widetilde{Z}_1$ CDM: overabundant binos mainly enhanced by axino/saxion decays (unless BBN-challenged)