LIGHT OF CRESST-II

JURE ZUPAN U. OF CINCINNATI

based on T. Schwetz, JZ 1106.6241; J. Kopp, T. Schwetz, JZ 1110.2721

THE QUESTION

- CoGeNT, DAMA, CRESST claim
 Bernabei et al. [DAMA], 0804.2741
 Signals
 Aalseth et al. [CoGeNT], 1002.4703; 1106.0650
 Angloher et al., [CRESST-II], 1109.0702
 - Is it (can it be) dark matter?
- three important results at TAUP
 - CRESST-II result
 - surface events in CoGeNT
 - KIMS result

J. Zupan Light DM in the light of CRESST-II

OUTLINE

- elastic spin independent scattering
 - several comments on experimental results
- inelastic DM and isospin violating DM
- parameter goodness of fit test

J. Zupan Light DM in the light of CRESST-II

SPIN INDEPENDENT SCATTERING

MODULATION IN COGENT?

fit with no modulation has acceptable goodness-of-fit:

- $\chi^2_{no \mod}$ is 9.5, 16.8, 11.7 for 15 d.o.f. for 3 eng. bands
- $\chi^2_{no mod} = 20$ for 15 d.o.f. for 0.5-3 keV (17%)
- 2.8σ preference for modulation
 J. Zupan Light DM in the light of CRESST-II
 5
 Aalseth et al. [CoGeNT], 1106.0650
 Exploring Low Mass DM Candidates, PITT PACC, Nov 15, 2011

PHASE OF THE MODULATION

VARIATIONS OF PHASE

- peak at day 152 in standard halo model only
- variations

 especially
 pronounced
 for light DM

if experiments compared within the same
 v_{min} range the phase should be the same
 J. Zupan Light DM in the light of CRESST-II
 v_{min} range the phase should be the same
 v_{min} range the phase should be the same

COMPARING DAMA AND COGENT

- for eSI CoGeNT (and DAMA) to be consistent with the rest one would need see talk by J. Collar
 - *L_{eff}* drop to zero below measurements
 - q_{Na} should be significantly larger
- Hooper, Collar, Hall, McKinsey, 1007.1005;
 - Hooper, Kelso, 1106.1066
- energy calibration of Xenon10 S2 analysis needs to be off
- CDMS made a major calibration error (in Ge and Si)

SURFACE EVENTS

- CoGeNT found that bulk of their signal is due to surface event
- will there be a signal left once results finalized?
- what is the effect of this contamination on best fit?
 - makes the disagreement between CoGeNT and DAMA worse
- due to this uncertainty will disregard CoGeNT

J. Zupan Light DM in the light of CRESST-II

9

SURFACE EVENTS

J. Zupan Light DM in the light of CRESST-II

9

SURFACE EVENTS

- CoGeNT found that bulk of their signal is due to surface event
- will there be a signal left once results finalized?
- what is the effect of this contamination on best fit?
 - makes the disagreement between CoGeNT and DAMA worse
- due to this uncertainty will disregard CoGeNT

J. Zupan Light DM in the light of CRESST-II

9

• due to this uncertainty will disregard CoGeNT

J. Zupan Light DM in the light of CRESST-II

9

NEW KIMS BOUND

- CsI detector
- the bound excludes any signal from I for DAMA
 - KIMS rate(3.6-5.8 keV) <0.0098 cnts/kg/day/ keV (90% C.L.)
 - DAMA S_m(2-4 keV)=0.0183±0.0022 cnts/kg/ day/keV
- if DAMA is due to DM then scattering on Na
 - if due to $DM \Rightarrow$ points to light DM

J. Zupan Light DM in the light of CRESST-II

10

NEW KIMS BOUND

- CsI detector
- the bound excludes any signal from I for DAMA
 - KIMS rate(3.6-5.8 keV) <0.0098 cnts/kg/day/ keV (90% C.L.)
 - DAMA S_m(2-4 keV)=0.0183±0.0022 cnts/kg/ day/keV
- if DAMA is due to DM then scattering on Na
 - if due to $DM \Rightarrow$ points to light DM

J. Zupan Light DM in the light of CRESST-II

10

SODIUM QUENCHING FACTOR

- what is the quenching factor qNa?
- Collar@TAUP: smaller than previous measurements
- moves the best fit point to higher DM masses
 - dominated by scattering on iodine

J. Zupan Light DM in the light of CRESST-II

11

dominated by scattering on iodine

J. Zupan Light DM in the light of CRESST-II

11

SODIUM QUENCHING FACTOR

- what is the quenching factor qNa?
- Collar@TAUP: smaller than previous measurements
- moves the best fit point to higher DM masses
 - dominated by scattering on iodine

J. Zupan Light DM in the light of CRESST-II

11

SODIUM QUENCHING

dominated by scattering on iodine

J. Zupan Light DM in the light of CRESST-II

11

CRESST

Angloher et al. [CRESST-II], 1109.0702

- CaWO₄ crystal, 730 kg days of data
- 67 events observed in the signal region
- background from e/γ events, α events, neutron events, Pb recoil
 - signal ~30±9 evnts (24±8 evnts)
- the significance of extra signal is $>4\sigma$

J. Zupan Light DM in the light of CRESST-II

J. Zupan Light DM in the light of CRESST-II

12

CRESST

Angloher et al. [CRESST-II], 1109.0702

- CaWO₄ crystal, 730 kg days of data
- 67 events observed in the signal region
- background from e/γ events, α events, neutron events, Pb recoil
 - signal ~30±9 evnts (24±8 evnts)
- the significance of extra signal is $>4\sigma$

J. Zupan Light DM in the light of CRESST-II

QUESTIONS

- elastic spin-independent with standard halo: not a good fit to all experiments
 - could a nongeneric DM model be viable?
 - could nuclear and astrophysical uncertainties make a big difference?

J. Zupan Light DM in the light of CRESST-II

13

DARK MATTER VARIATIONS

- a number of variations on DM one can consider
 - Kamionkowski, Kurylov, hep-ph/0307185; Giuliani, hep-ph/0504157; Cotta et al., 0903.4409; isospin violating couplings Kang et al., 1008.5243; Feng et al., 1102.4331;
 - Chang et al., 1004.0697; Frandsen et al., 1105.3734
 - velocity suppressed interactions
 - inelastic scattering
 - endothermic, exothermic
 - scattering through resonances
 - additional momentum dependence

Tucker-Smith, Weiner, hep-ph/0101138 Graham, Harnik, Rajendran, Saraswat, 1004.0937

Bai, Fox, 0909.2900

Feldstein, Fitzpatrick, Katz, 0908.2991; Chang, Pierce, Weiner, 0908.3192

- light mediators, derivative interactions,...
- leptophilic interactions
- spin dependent interactions

Kopp, Niro, Schwetz, JZ, 0907.3159

Exploring Low Mass DM Candidates, PITT PACC, Nov 15, 2011

J. Zupan Light DM in the light of CRESST-II

14

OTHER UNCERTAINTIES

- astrophysical uncertainties see talk by A. Green
 - vary velocity profiles, *v*_{esc}, etc
 - "integrate them out"

Fox, Liu, Weiner 1011.1915 Fox, Kribs, Tait, 1011.1910

- channeling Bozorgnia, Gelmini, Gondolo, 1006.3110; 1008.3676; 1009.3325
- nuclear and atomic physics
 - quenching factors, *L_{eff}* in S1, *Q_y* in Xenon S2
 - nuclear form factor uncertainties

J. Zupan Light DM in the light of CRESST-II

TENSIONS

Schwetz, JZ 1106.6241; Farina, Pappadopulo, Strumia, Volansky 1107.0715; Fox, Kopp, Lisanti, Weiner 1107.0717; Hooper, Kelso 1106.1066; McCabe 1107.0741

- a complete check for "old" CoGeNT and DAMA was done by four groups
- the bottom line:
 - none of the models can make both signals
 +other bounds work
 - including uncertainties
- focus on CRESST-II
 - could it be due to DM?

J. Zupan Light DM in the light of CRESST-II

16

- CRESST target contains W, is heavy
- if scattering of DM inelastic

- W the heaviest, there is a solution, $\delta \sim 90 \text{keV}$
- maybe tension with Xenon-100 (PG test values of 2%-20%)
- very dependent on astrophysics details
 - a coincidence problem

J. Zupan Light DM in the light of CRESST-II

17

- maybe tension with Xenon-100 (PG test values of 2%-20%)
- very dependent on astrophysics details
 - a coincidence problem

J. Zupan Light DM in the light of CRESST-II

17

- CRESST target contains W, is heavy
- if scattering of DM inelastic

- W the heaviest, there is a solution, $\delta \sim 90 \text{keV}$
- maybe tension with Xenon-100 (PG test values of 2%-20%)
- very dependent on astrophysics details
 - a coincidence problem

J. Zupan Light DM in the light of CRESST-II

17

• CRESST target contains W, is heavy

- CRESST target contains W, is heavy
- if scattering of DM inelastic

- W the heaviest, there is a solution, $\delta \sim 90 \text{keV}$
- maybe tension with Xenon-100 (PG test values of 2%-20%)
- very dependent on astrophysics details
 - a coincidence problem

J. Zupan Light DM in the light of CRESST-II

17

ISOSPIN VIOLATING DM

- DM could couple differently to *p* than *n*
 - counter example: higgs mediated scattering
 dominated by strangeness content
- if couplings to *u*, *d* dominate IVDM possible
- phenomenologically interesting if couplings such that scattering on Xe suppressed
- not possible to suppress it completely
 - in detector several isotopes

J. Zupan Light DM in the light of CRESST-II

IVDM AND CRESST

• define effective atomic number

$$A_{\text{eff}}^2 \equiv \sum_{i \in \text{isotopes}} 2r_i [Z\cos\theta + (A_i - Z)\sin\theta]^2$$

here $\tan\theta = f_n/f_p$

- Xe suppressed for $f_n/f_p = -0.7$
 - but then Si, Ge large
 - also W suppressed, Ca and O large
 - in CRESST-II scattering exclusively on Ca an O now
 - 39% scattering on O, 61% on Ca
 - exactly opposite to iDM solution where only W

J. Zupan Light DM in the light of CRESST-II

19

- also W suppressed, Ca and O large
- in CRESST-II scattering exclusively on Ca an O now
 - 39% scattering on O, 61% on Ca
 - exactly opposite to iDM solution where only W

J. Zupan Light DM in the light of CRESST-II

IVDM AND CRESST

IVDM AND CRESST

SPECTRUM

- pick three points close to minima for the three models
- iDM reasonable description of data but only 12.2 signal events predicted
 - scattering off W exclusively
- eSI much better description with 24.8 events
 - scattering from W negligible, mostly off O and Ca
- IVDM again smaller signal predicted, O(10) evnts.
 - scattering mostly off O and Ca

J. Zupan Light DM in the light of CRESST-II

21

- scattering from W negligible, mostly off O and Ca
- IVDM again smaller signal predicted, O(10) evnts.
 - scattering mostly off O and Ca

J. Zupan Light DM in the light of CRESST-II

21

SPECTRUM

- pick three points close to minima for the three models
- iDM reasonable description of data but only 12.2 signal events predicted
 - scattering off W exclusively
- eSI much better description with 24.8 events
 - scattering from W negligible, mostly off O and Ca
- IVDM again smaller signal predicted, O(10) evnts.
 - scattering mostly off O and Ca

J. Zupan Light DM in the light of CRESST-II

21

PG TEST

Maltoni, Schwetz, hep-ph/0304176

- parameter goodness of fit test
- based on χ^2 function

$$\chi^2_{\rm PG} = \Delta \chi^2_1 + \Delta \chi^2_2$$

$$\Delta \chi_i^2 = \chi_i^2 (\text{global bf}) - \chi_{i,\min}^2$$

- i=1,2 datasets whose compatibil. are tested
- χ^2_{PG} gives the penalty due to additional data
- if follows a χ^2 distribution

J. Zupan Light DM in the light of CRESST-II

22

PG TEST

Data set	$\chi^2_{ m min}$	$m_{\chi} ~[{ m GeV}]$	$\sigma[{ m cm}^2]$	$\delta \; [{\rm keV}]$	f_n/f_p	$\Delta \chi^2 \; [\chi^2_{ m PG}]$	PG
Elastic spin-independent scattering (eSI)							
CRESST	28.5	12.6	3.2×10^{-41}	0	1	0.5	
$CRESST_{com}$	0	0	0	0	1	3.7	
Combination	32.7	13.2	2.0×10^{-41}	0	1	[4.2]	13%
CRESST	28.5	12.6	$3.2 imes 10^{-41}$	0	1	18.9	
$Xe100{+}CDMS_{LT}{+}CRESST_{com}$	0	0	0	0	1	0.00	
Combination	47.4	4.0	1.0×10^{-44}	0	1	[18.9]	$< 10^{-4}$
Inelastic spin-independent scattering (iDM)							
$CRESST+CRESST_{com}$	32.7	13.3	2.0×10^{-41}	0	1	3.2	
$Xe100+CDMS_{LT}$	0	0	0	0	1	1.5	
Combination	37.4	35.5	1.0×10^{-38}	92	1	[4.7]	19%
Isospin-violating dark matter (IVDM)							
CRESST+CRESST _{com}	32.5	14.1	4.5×10^{-40}	0	-0.67	8.0	
$Xe100{+}CDMS{+}CDMS_{Si}$	0	0	0	0	1	4.3	
Combination	47.2	18.8	$7.1 imes 10^{-41}$	0	-0.70	[12.3]	0.6%

J. Zupan Light DNI in the light of CKESSI-II 23

Nov 15, 2011

CONCLUSIONS

• CRESST could be a signal of DM, if scattering inelastic or isospin violating

J. Zupan Two topics on dark matter....

Virginia Tech, Nov 14, 2011

24