Probing Light Dark Matter at the LHC

Lian-Tao Wang University of Chicago

Exploring Low-mass Dark Matter Candidates PACC, UPITT Nov. 14, 2011

Searching for WIMP dark matter

Searching for WIMP dark matter

Monday, November 14, 2011

Candidates, models, scenarios...

Different spin different Z₂

LSNPs: SUSY LSP Extra Dim. LKP T-parity LTP LZP L...P Z₃

Candidates, models, scenarios...

"Model independent" Different spin different Z₂

Effective operator

LSNPs: SUSY LSP Extra Dim. LKP T-parity LTP LZP L...P Z₃ Extended Models

dark sectors

This talk

- Dark matter part of a rich TeV NP scenario.
 - Search for SUSY dark matter, and measure its properties (Highlight challenges).
- Connection between collider searches and direct detection, focusing on light dark matter.
 - Effective operator.
 - Searching for the mediator.
- Signals from new model extensions. (brief)

Search for SUSY dark matter

Discovering dark matter:

- DM candidate embedded in an extended TeV new physics scenario, such as SUSY.

Other new physics scenarios (extra-dim, compositeness...) similar.

Could be challenging to identify.

- For example: the "well tempered" scenario. Nearly degenerate NLSP and LSP.

N.Arkani-Hamed, A. Delgado, G. Giudice, hep-ph/0601041

See also, S. Gori, P. Sechwaller, C. Wagner, 1103.4138

LHC prospect for well tempered DM

- ▷ soft leptons \leftrightarrow well tempered, long term.
- No light gluino or squark, very hard.
 - ▶ VBF, Drell-Yan.

In general, hard to interpret.

- After the discovery, we can derive some basic properties, such as whether the new particles are colored or not, whether they decay to leptons, and so on.
- Many possible interpretations.

Degeneracies! Quantum number, mass, spin... For example: in supersymmetry, bino vs wino, squark vs gluino... Arkani-Hamed, Kane, Thaler, and Wang, JHEP 0608:070,2006.

Possible degeneracies in:

- The identity of new physics particles. For example:

Identity swap, hard to distinguish

- In addition
 - ▶ MLSP.
 - ▶ Spin.
- Crucial to combine with direct/indirect detections

Possible degeneracies in:

- The identity of new physics particles. For example:

Identity swap, hard to distinguish

- In addition
 - ▶ MLSP.
 - ▶ Spin.
- Crucial to combine with direct/indirect detections
 Difficult task, but accomplishable.

Probing light dark matter, collider searches in connection with direct detection

XENON 100, 1104.2549

XENON 100, 1104.2549

- DM of "Typical" scenarios: SUSY LSP, ...

XENON 100, 1104.2549

XENON 100, 1104.2549

XENON 100, 1104.2549

- Collider searches provide stronger bounds/potential

Basic channel

- Pair production + additional radiation.

- Large Standard Model background, about 10 times the signal.
- Very challenging.

Effective operator approach

Effective operator approach

momentum exchange q~100 MeV << mφ effectively,

 $\frac{1}{\Lambda^d}\chi\chi J_{\rm SM}$

Effective operator approach

momentum exchange q~100 MeV << mφ effectively,

 $\frac{1}{\Lambda^d}\chi\chi J_{\rm SM}$

Use colliders to constrain and probe the same operator

 $\frac{1}{\Lambda^d}\chi\chi J_{\rm SM}$

Recent studies.

- I. Beltran, Hooper, Kolb, Krusberg, Tait, 1002.4137
- 2. Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1005.1286
- 3. Bai, Fox, Harnik, 1005.3797
- 4. Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1008.1783
- 5. Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1009.0008
- 6. Fox, Harnik, Kopp, Tsai, 1103.0240
- 7. Fortin, Tait, 1103.3289
- 8. Cheung, Tseng, Yuan, 1104.5329
- 9. Fox, Harnik, Kopp, Tsai, 1109.4398
- 10. Goodman, Shepherd, 1111.2359

For example, 1008.1783

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1008.1783

For example, 1008.1783

Goodman, Ibe, Rajaraman, Shepherd, Tait, Yu, 1008.1783

For small m_X ,

collider rates controlled by larger mass scales, i.e., p_T cut; does not depend on m_X .

Collider bounds flat and stronger.

More recently

Fox, Harnik, Kopp, and Tsai, 1109.4398

Effective operator effective?

Effective operator effective?

Moreover, the mediator itself should be within reach!

The dependence on the mass of the mediator has been explored in: 1105.3797, 1103.0240, 1111.2359

Mediator, two typical examples.

N= Ar, Ge, Xe, ...

- ϕ =Higgs

- g_{SM}≈(100 MeV)/(100 GeV)
- ▶ $m_x \approx 100 \text{ GeV}$

▷
$$\sigma_n \approx 10^{-43} - 10^{-45} \text{ cm}^{-2}$$

Φ=100 GeV spin-1, D=dirac
 fermion

▷
$$\sigma_n \approx 10^{-36} - 10^{-39} \text{ cm}^{-2}$$

SUSY, typically Higgs mediated.

Case study: a spin-1 Z'

Xiang-Dong. Ji, Haipeng An, LTW in progress

$$\mathcal{L} = Z'_{\mu} [\bar{q}(g_{Z'}\gamma^{\mu} + g_{Z'5}\gamma^{\mu}\gamma_5)q + \bar{X}(g_D\gamma^{\mu} + g_{D5}\gamma^{\mu}\gamma_5)X]$$

Only couples to SM quarks and DM.

 $g_D=g_{Z'}$, direct detection rate only depends on $g_{Z'}/M_{Z'}$

 $g_D=g_{Z'}$, direct detection rate only depends on $g_{Z'}/M_{Z'}$

Operators for direct detection

_	Operator	Structure	DM-nucleon Cross Section
O_1	$\bar{N}\gamma^{\mu}N\bar{\chi}\gamma_{\mu}\chi$	SI, MI	$\frac{9g_{Z'}^2g_D^2M_N^2M_\chi^2}{\pi M_{Z'}^4(M_N+M_\chi)^2}$
O_2	$ar{N}\gamma^{\mu}Nar{\chi}\gamma_{\mu}\gamma_5\chi$	SI, MD $\propto \Delta \vec{p}_N \cdot \Delta \vec{s}_{\chi}$, (σ_{χ})	$\frac{g_{Z'}^2 g_{D5}^2 M_N^4 M_\chi^2 v^2}{\pi M_{Z'}^4 (M_N + M_\chi)^4}$
O_3	$\bar{N}\gamma^{\mu}\gamma_5 N\bar{\chi}\gamma_{\mu}\chi$	SD, MD $\propto \Delta \vec{s}_N \cdot \Delta \vec{p}_{\chi}$	$\frac{g_{Z'5}^2 g_D^2 M_N^2 M_\chi^2 [(M_N + M_\chi)^2 + 2M_N^2] v^2}{2\pi M_{Z'}^4 (M_N + M_\chi)^4}$
O_4	$\bar{N}\gamma^{\mu}\gamma_5 N\bar{\chi}\gamma_{\mu}\gamma_5\chi$	SD, MI $\propto \Delta s_N \cdot \Delta s_\chi$	$\frac{3g_{Z'5}^2g_{D5}^2M_N^2M_\chi^2}{\pi M_{Z'}^4(M_N+M_\chi)^2}$

Operators for direct detection

Will also show results for O₄

Monojet search

- Tevatron. CDF 1 fb⁻¹, MET>80 GeV.

- LHC. ATLAS 1 fb⁻¹

LowPT	Selection requires $\not\!\!E_T > 120 \text{ GeV}$, one jet $p_T(j_1) > 120 \text{ GeV}$, $ \eta(j_1) < 2$,
	events are vetoed if they contain a second jet with $p_T(j_2) > 30 \text{ GeV}$
	and $ \eta(j_2) < 4.5$.
HighPT	Selection requires $\not\!\!\!E_T > 220 \text{ GeV}, p_T(j_1) > 250 \text{ GeV}, \eta(j_1) < 2,$
	events are vetoed if there is a second jet with $p_T(j_2) > 60 \text{ GeV}$
	or $\Delta \phi(j_2, \not\!\!E_T) < 0.5$ and $ \eta(j_2) < 4.5$.
	Any further jets with $ \eta(j_3) < 4.5$ must have $p_T(j_3) < 30$ GeV.
vertHighPT	Selection requires $\not\!$
	$ \eta(j_1) < 2$, and events are vetoed if there is a second jet with
	$\eta(j_2) < 4.5$ and with either $p_T(j_2) > 60 \text{ GeV}$
	or $\Delta(j_2, \not\!\!\!E_T) < 0.5$. Any further jets with $ \eta(j_3) < 4.5$
	must have $p_T(j_3) < 30$ GeV.

Limits and reaches: monojet+MET

Xiangdong Ji, Haipeng An, LTW, appearing soon.

Spin dependent

Dashed: Tevatron I fb⁻¹, MET > 80 GeV, CDF, PRL 101, 2008 Solid: LHC, 7 TeV I fb⁻¹ Very High PT

M_Z[`] = 100 GeV, 300 GeV, 500 GeV, 1 TeV, 1.5 TeV

LHC reach in monojet+MET.

More scenarios are under study. Xiangdong Ji, Haipeng An, LTW, appearing soon.

LHC reach in monojet+MET.

LHC reach in monojet+MET.

Di-jet resonance searches.

We could, and should, search for the mediator directly!

- Resonance searches.
 - ▶ ATLAS: 1 fb⁻¹ 1108.6311
 - ▷ CMS: 1 fb⁻¹ 1107.4771
 - ▷ CDF: Phys. Rev. D79 (2009).
- Compositeness.
 - ▷ CMS 36 pb⁻¹: Phys. Rev. Lett. 106 (2011)
 - Dzero: Phys. Rev. Lett. 103 (2009)

Combining di-jet with monojet

Varying $y=(g_D/g_{Z'})$

Signals from new model extensions

Dark light Higgs

- NMSSM near PQ limit.
 - ▷ Very light GeV- 10 GeV scalars.
 - Singlino-like light dark matter. Large σ_{SI} .

hiding Higgs?

CDM embedded in a dark sector?

- Dark force, suppressed couplings to the SM.
- Force carriers part of the dark sector, expected to be light.
 - Direct detection rate could still be significant.

Small Z' mass.

Very light Z' -> Lepton Jets

- Decay of the dark photon arising from a heavier particle (Z boson, MSSM LSP) leads to a highly

- Arkani-Hamed, Weiner 0810.0714;
- Baumgart, Cheung, Ruderman, LTW, Yavin 0901.0283; Cheung, Ruderman, LTW, Yavin 0909.0290

Conclusion.

- One of the most exciting opportunities:
 Discovering the WIMP dark matter and measuring its properties.
- LHC will play a crucial role in this pursuit.
- Multiple aspects and approaches.
 - Search for "conventional" CDM.
 - More "model independent" searches.
 - Alternative models with distinct signatures.

TeV dark matter: WIMP miracle.

Freeze out: dropping out of thermal eq.

Stronger coupling, lower abundance.

- If dark matter is
 - ▶ Weakly interacting: $g_D \sim 0.1$
 - ▷ Weakscale: M_D ~ 10s GeV TeV
 - ▶ We get the right relic abundance of dark matter.
- A major hint of TeV scale new physics.
 - ▷ We can produce and study them at the LHC!

Example: spin of \tilde{N}

Example: spin of \tilde{N}

Clean exclusive sample

Example: spin of \tilde{N}

Clean exclusive sample

Boost (kinematics) vs matrix element (spin) \rightarrow Consider $m_{q\ell}$

Example: spin of \tilde{N}

Clean exclusive sample

Boost (kinematics) vs matrix element (spin) \rightarrow Consider $m_{q\ell}$

Combinatorics

Example: spin of \tilde{N}

Clean exclusive sample

Boost (kinematics) vs matrix element (spin) \rightarrow Consider $m_{q\ell}$

Combinatorics

 No universally applicable method. Different strategies will be used in different scenarios. A review: LTW and Yavin, arXiv:0802.2726
 More information of the signal, masses and underlying processes, is crucial.

For the dark sector and back.

- Dark matter self-interaction, mediated by

 $A_{\mu}^{\text{dark}}, m_{A^{\text{dark}}} \sim (100 \text{s MeV} - \text{GeV})$

DM interpretation of the exces

Arkani-Hamed, Finkbeiner, Slatyer, Weiner 0810.0713 Arkani-Hamed, Weiner 0810.0714 also see Pospelov, Ritz, Voloshin 0711.4866

Supersymmetric dark force

- Most natural way of generating the GeV scale.
- Spectacular signal.
- Earlisptid copyers f. a SUSY Lepton Jet Event

