Fermi and ACT Limits on WIMP Dark Matter from Galactic Satellites

Louis Strigari KIPAC-Stanford University PITT Low Mass Dark Matter Workshop 11/15/2011

Particle Dark Matter: WIMPs

How to find the dark matter

2 year source catalog

2FGL associations

Milky Way Satellite Galaxies

- Old stars
- Dark-matter dominated
- Same central dark matter densities
 [Strigari et al. Nature 2008)

[Mateo ApJ 1993; Gilmore et al. ApJ 2007]

<u>Satellite</u>	Year Discovered
LMC	1519
SMC	1519
Sculptor	1937
Fornax	1938
Leo II	1950
Leo I	1950
Ursa Minor	1954
Draco	1954
Carina	1977
Sextans	1990
Sagittarius	1994
Ursa Major I	2005
Willman 1	2005
Ursa Major II	2006
Bootes I	2006
Canes Venatici I	2006
Canes Venatici II	2006
Coma Berenices	2006
Segue 1	2006
Leo IV	2006
Hercules	2006
Bootes II	2007
Leo V	2008
Pisces I	2009
Segue 2	2009
Segue 3	2010
Pisces II	2010

Low mass stellar systems

A NEW MILKY WAY COMPANION: UNUSUAL GLOBULAR CLUSTER OR EXTREME DWARF SATELLITE?

Beth Willman¹, Michael R. Blanton¹, Andrew A. West², Julianne J. Dalcanton^{2,3}, David W. Hogg¹, Donald P. Schneider⁴, Nicholas Wherry¹, Brian Yanny⁵, Jon Brinkmann⁶

BIG FISH, LITTLE FISH: TWO NEW ULTRA-FAINT SATELLITES OF THE MILKY WAY

V. BELOKUROV¹, M. G. WALKER¹, N. W. EVANS¹, G. GILMORE¹, M. J. IRWIN¹, D. JUST², S. KOPOSOV¹, M. MATEO³, E. OLSZEWSKI², L. WATKINS¹, AND L. WYRZYKOWSKI¹

Ultra-faint satellites: kinematics

Simon & Geha ApJ 2007

Geha, Willman, Simon, Strigari, Kirby, Law, Strader, ApJ 2009

The Darkest Galaxy: Segue 1

Simon, Geha, Martinez, Minor, Kirby, Bullock, Kaplinghat, Strigari, Law, Willman, Choi, et al., ApJ 2011

The Darkest Galaxy: Segue 1

Inclusion of binaries: Martinez et al. 2011, McConachie & Cote 2011

Willman 1: A probable galaxy

Willman, Geha, Simon, Strigari, Kirby, Strader, Warres, AJ 2010

Kinematics: More detailed look

- * Model both the stellar and the dark matter distribution
- * Statistics of stellar orbits (velocity anisotropy)
- * Assume hydrostatic equilibrium, determine mass
- Warning!: acceptable solutions don't guarantee consistent distribution function

$$\mathcal{L}(\mathscr{A}) \equiv P(\{v_i\}|\mathscr{A}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi(\sigma_{los,i}^2 + \sigma_{m,i}^2)}} \exp\left[-\frac{1}{2}\frac{(v_i - u)^2}{\sigma_{los,i}^2 + \sigma_{m,i}^2}\right]$$

$$\mathsf{Flux} = \left\{ \int_0^{\Delta\Omega} \left\{ \int_{\mathrm{LOS}} \rho^2 [r(\theta, \mathcal{D}, s)] \, ds \right\} \, d\Omega \right\} \left\{ \int_{E_{\mathrm{th}}}^{M_{\chi}} \sum_i \frac{dN_{\gamma,i}}{dE} \frac{\langle \sigma v \rangle_i}{M_{\chi}^2} \, dE_{\cdot} \right\}$$

Are satellites gamma-ray sources?

Stacked Satellite Search

Fermi-LAT Collaboration, 1108.3546

See also Geringer-Sameth & Koushiappas 2011 1108.2914

Gamma-ray limits: Segue 1

VERITAS

Projected limits

Search for Dark Subhalos

- Search for objects that only shine because of dark matter annihilation
- Some satellites could be within a few kpc of the Sun, and their extension may be resolved by the LAT
- Search criteria:
 - More than 20 degrees from Galactic plane
 - No counterpart at other wavelengths
 - Emission constant in time
 - Spatially extended: 1 degree radial extension
 - See also Belikov, Hooper, Buckley, 1111.2613

Search for Dark Subhalos

Preliminary, Fermi-LAT Collaboration, submitted to ApJ

Search for Dark Subhalos

Preliminary, Fermi-LAT Collaboration, submitted to ApJ

Fermi-LAT detection of M31

Fermi-LAT collaboration, Astronomy and Astrophysics, 523, L2

Going forward

- Fermi-LAT results now rule out thermal relic particle DM in the mass range 10-25 GeV
- More Galactic satellites are out there, and more data is on the way
- Stay tuned...