Fermi and ACT Limits on WIMP Dark Matter from Galactic Satellites

Louis Strigari
KIPAC-Stanford University
PITT Low Mass Dark Matter Workshop
11/15/2011

Particle Dark Matter: WIMPs

$<\sigma v>\sim 3 \times 10^{-26} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$

e. g. Zeldovich 1965, Chiu 1966

How to find the dark matter

2 year source catalog

2 year source catalog

WIMP annihilation:Search Strategies

Satellites: Low bkgd, good source id, low statistics

Galactic center: Good statistics, source confusion/
diffuse backgrounds

Spectral lines: Good source id, low statistics

Extragalactic: Good statistics, diffuse bkgds and astrophysics

Galaxy clusters: Low backgrounds but low statistics

Milky Way Satellite Galaxies

- Old stars
- Dark-matter dominated
- Same central dark matter densities [Strigari et al. Nature 2008)

Satellite	Year Discovered
LMC	1519
SMC	1519
Sculptor	1937
Fornax	1938
Leo II	1950
Leo I	1950
Ursa Minor	1954
Draco	1954
Carina	1977
Sextans	1990
Sagittarius	1994
Ursa Major I	2005
Willman 1	2005
Ursa Major II	2006
Bootes I	2006
Canes Venatici I	2006
anes Venatici II	2006
Coma Berenices	2006
Segue 1	2006
Leo IV	2006
Hercules	2006
Bootes II	2007
Leo V	2008
Pisces I	2009
Segue 2	2009
Segue 3	2010
Pisces II	2010

Year Discovered
1519
1519
Sculptor 1937
Fornax
1938
1950
1950
954
1954

1990
1994
2005
2005
2006
2006
2006
2006
2006
2006
2006

2008

Low mass stellar systems

Galaxies!

Walker et al ApJL 2007 R (pc)

A NEW MILKY WAY COMPANION: UNUSUAL GLOBULAR CLUSTER OR EXTREME DWARF SATELLITE?
Beth Willman ${ }^{1}$, Michael R. Blanton ${ }^{1}$, Andrew A. West ${ }^{2}$, Julianne J. Dalcanton ${ }^{2,3}$, David W. Hogg ${ }^{1}$, Donald P. Schneider ${ }^{4}$, Nicholas Wherry ${ }^{1}$, Brian Yanny ${ }^{5}$, Jon Brinkmann ${ }^{6}$
V. Belokurov ${ }^{1}$, M. G. Walker ${ }^{1}$, N. W. Evans ${ }^{1}$, G. Gilmore ${ }^{1}$, M. J. Irwin 1, D. Just ${ }^{2}$, S. Koposov ${ }^{1}$, M. Mateo ${ }^{3}$, E. Olszewskir ${ }^{2}$, L. Watkins ${ }^{1}$, and L. Wyrzykowski ${ }^{1}$

Ultra-faint satellites: kinematics

The Darkest Galaxy: Segue 1

Geha, Willman, Simon, Strigari, Kirby, Law, Strader, ApJ 2009

The Darkest Galaxy: Segue 1

Simon, Geha, Martinez, Minor, Kirby, Bullock, Kaplinghat, Strigari, Law, Willman, Choi, et al., ApJ 2011

The Darkest Galaxy: Segue 1

Inclusion of binaries: Martinez et al. 2011, McConachie \& Cote 2011

Willman 1: A probable galaxy

Kinematics: More detailed look

*Model both the stellar and the dark matter distribution

* Statistics of stellar orbits (velocity anisotropy)
*Assume hydrostatic equilibrium, determine mass
* Warning!: acceptable solutions don't guarantee consistent distribution function

$$
\mathcal{L}(\mathscr{A}) \equiv P\left(\left\{v_{i}\right\} \mid \mathscr{A}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi\left(\sigma_{l o s, i}^{2}+\sigma_{m, i}^{2}\right)}} \exp \left[-\frac{1}{2} \frac{\left(v_{i}-u\right)^{2}}{\sigma_{\text {los }, i}^{2}+\sigma_{m, i}^{2}}\right]
$$

Are satellites gamma-ray sources?

Stacked Satellite Search

Fermi-LAT Collaboration, 1108.3546
See also Geringer-Sameth \& Koushiappas 20111108.2914

Segue 1: The Darkest Galaxy

Gamma-ray limits: Segue 1

Essig, Sehgal, Strigari, Simon, Geha, PRD 2010

VERITAS

MAGIC

MAGIC

Projected limits

Search for Dark Subhalos

- Search for objects that only shine because of dark matter annihilation
- Some satellites could be within a few kpc of the Sun, and their extension may be resolved by the LAT
- Search criteria:
- More than 20 degrees from Galactic plane
- No counterpart at other wavelengths
- Emission constant in time
- Spatially extended: 1 degree radial extension
- See also Belikov, Hooper, Buckley, 1111.2613

Search for Dark Subhalos

Preliminary, Fermi-LAT Collaboration, submitted to ApJ

Search for Dark Subhalos

Preliminary, Fermi-LAT Collaboration, submitted to ApJ

Fermi-LAT detection of M31

Fermi-LAT collaboration, Astronomy and Astrophysics, 523, L2

Going forward

- Fermi-LAT results now rule out thermal relic particle DM in the mass range $10-25 \mathrm{GeV}$
- More Galactic satellites are out there, and more data is on the way
- Stay tuned...

