DOWN WITH HALO MODELS

Neal Weiner CCPP work w/ PJ Fox, J Kopp, J Liu, M Lisanti

WHATTHE HECK IS GOING ON?

- A whole bunch of experiments have data
- To leading order, no one agrees with anyone
- So let's talk about that

LIGHT WIMPS?!?!!

DAMA
modulation
through Na

 CoGeNT low energy scattering on Ge

Different targets Different **type** of signal Different level of **S/B**

• CRESST scattering through O (and Ca) above energy dependent backgrounds

Important to understand the experiments in as model independent manner as possible

ISTHIS CONSISTENT?

NB: This is not a metric space!

TWO QUESTIONS

- Are there signs of WIMPs in CoGeNT (i.e., modulation)?
- Can you relate experiments without assuming Maxwellian distribution?

LETS TALK MODULATION

• If there's modulation at DAMA, is there modulation at CoGeNT?

Is there modulation in any other frequency?

• What is the modulated fraction and phase?

Seemingly not at 152 days... large modulated fraction

• Where (in energy) is the modulation?

Lots of modulation at high energy?

• Where (in energy) is the modulation?

Modulation is statistically more significant at high energies (low energies depend on lowest bin)

I count about 50 (or maybe 100?) events up here If efficiencies are O(1) =>0.37 (0.74) cpd/kg vs 0.78

so is it modulating?

LIGHT WIMP SUMMARY

- Nothing overlaps
- Modulation is way higher than expected
- Simple extrapolation leads to conflicts with null results
- What to do?

The model builder's last refuge...

•

W/AIRS

Kuhlen, et al

MB generally good near the peak, generally not near the tail

WHAT HAPPENS TO THIS PLOT?

THE GOAL

• What can we say about direct detection experiments without making any appeal to halo models?

- Find Dark Matter
- Determine DM mass
- Determine DM interaction strength

COGENT=>CDMS

Can you do this with other experiments?

TWO KEY POINTS

f(x, t)

ro

$$\frac{dR}{dE_R} = \frac{N_T M_T \rho}{2m_\chi \mu^2} \sigma(E_R) g(v_{min}) \qquad g(v_{min}) = \int_{v_{min}} d^3 v \, \frac{f(\mathbf{v}, t)}{v} \\ \sigma_{SI}(E_R) = \sigma_p \frac{\mu^2}{\mu_{n\chi}^2} \frac{(f_p Z + f_n (A - Z))^2}{f_p^2} F^2(E_R)$$

1) all the energy dependence is in two functions

$$v_{min} = \sqrt{\frac{M_T E_R}{2\mu^2}}$$
 2) there is a 1-1 mapping between velocity and energy

THE IDEA: PART I

Suppose you want to compare two experiments, I and 2

$[E'_{low}, E'_{high}] => [v'^{l,low}_{min}, v'^{l,high}_{min}]$

map the energy range studied in experiment 1 to a velocity space range map velocity space range back to energy space for experiment 2

$[\mathbf{v}^{I,low}_{min}, \mathbf{v}^{I,high}_{min}] => [\mathbf{E}^{2}_{low}, \mathbf{E}^{2}_{high}]$

we now have an energy range where the experiments are studying the same particles

 $[E'_{low}, E'_{high}] \leq \geq [E^2_{low}, E^2_{high}]$

TABLE I: Conversion of energy ranges (all in keV) between various experiments/targets for a 10 GeV DM particle, using the expression in (7).

THE IDEA: PART 2

Invert:

$$\frac{dR}{dE_R} = \frac{N_T M_T \rho}{2m_\chi \mu^2} \sigma(E_R) g(v_{min}) \longrightarrow g(v) = \frac{2m_\chi \mu^2}{N_T M_T \rho \sigma(E_R)} \frac{dR_1}{dE_1}$$

$$\frac{dR_2}{dE_R} \left(E_2 \right) = \frac{C_T^{(2)}}{C_T^{(1)}} \frac{F_2^2(E_2)}{F_1^2 \left(\frac{\mu_1^2 M_T^{(2)}}{\mu_2^2 M_T^{(1)}} E_2 \right)} \frac{dR_1}{dE_R} \left(\frac{\mu_1^2 M_T^{(2)}}{\mu_2^2 M_T^{(1)}} E_2 \right)$$

A direct prediction of the rate at experiment 2 from experiment 1

When new data finalize, can reapply, but approach is same

(plots from preliminary data)

module	$E_{\rm acc}^{\rm mm}$ [keV]	acc. events	
Ch05	12.3	11	
Ch20	12.9	6	
Ch29	12.1	17	

MODULATION

CoGeNT "exponential" signal

Bin	CoGeNT	Ge	Na (Q=0.3)	Si	0	Xe
1	[0.5, 0.9]	[2.3,3.8]	[1.5, 2.5]	[4.5, 7.6]	[5.8, 9.9]	[1.4, 2.3]
1	0.90 ± 0.72	0.23 ± 0.18	0.078 ± 0.062	0.035 ± 0.028	0.011 ± 0.009	0.72 ± 0.58
9	[0.9, 1.5]	[3.8, 6.1]	[2.5, 4.0]	[7.6, 11.9]	[9.9, 15.6]	[2.3, 3.7]
	0.37 ± 0.55	0.1 ± 0.149	0.035 ± 0.052	0.015 ± 0.023	0.005 ± 0.008	0.31 ± 0.46
2	[1.5, 2.3]	[6.1, 8.9]	[4.0, 5.8]	[11.9, 17.5]	[15.6, 22.8]	[3.7, 5.4]
0	0.48 ± 0.22	0.136 ± 0.063	0.049 ± 0.022	0.021 ± 0.01	0.007 ± 0.003	0.41 ± 0.19
1	[2.3, 3.1]	[8.9,11.6]	[5.8, 7.6]	[17.5, 22.8]	[22.8, 29.8]	[5.4,7]
	0.27 ± 0.23	0.08 ± 0.068	0.029 ± 0.025	0.013 ± 0.011	0.004 ± 0.004	0.23 ± 0.2

CoGeNT modulation/CRESST signal For XENON100 need full efficiency Green's functions to calculate limits

CONSTRAINTS?

What if your experiment

a) doesn't probe the same vmin space?b) doesn't see anything

Make a limit on g(v)!

CONSTRAINING G(V)

use monotonicity of g(v) to set limits $\frac{dR}{dE_R} = \frac{N_T M_T \rho}{2m_\chi \mu^2} \sigma(E_R) g_1 \Theta(v_1 - v_{min}(E_R))$

CURRENT LIMITS

IN SUMMARY

- We are motivated to consider light WIMPs (i.e., we are here)
- Light WIMPs very sensitive to the tail of distributions
- Modulation seems present but very large
- Need techniques to compare experiments independent of halo model
- Even in those techniques, tensions are obvious