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The Correlation 
Function

• Excess probability of finding a galaxy a 
distance r, from another:

• If the local galaxy density is ng = ng [1+δ(x)], 
then:

• and:  

dP = n̄gdV1 × n̄g[1 + ξ(r)]dV2

-

dP= n̄2
g 〈[1 + δ("x1)][1 + δ("x1 + "r)]〉dV1dV2

= n̄2
g[1 + 〈δ("x1)δ("x1 + "r)〉]dV1dV2

ξ(r) = 〈δ(#x1)δ(#x1 + #r)〉
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Correlation Function

Peebles & Hauser 1974

angular separation
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Correlation Function

Perpendicular separation
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Correlation Function

Gott & Turner 1979
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de Lapparent et al. 1987



Correlation Function

Maddox et al. 1990
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Correlation Function
Tucker et al. 1997
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Correlation Function

Szapudi et al. 2000
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Correlation Function

Zehavi et al. (SDSS) 2004

Projected separation
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lation functionwpðrpÞ by integrating !ðrp;"Þ over ",

wpðrpÞ # 2

Z 1

0
d" !ðrp;"Þ ¼ 2

Z 1

0
dy !r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2p þ y2

q" #
; ð9Þ

where !r is the desired real-space correlation function (Davis
& Peebles 1983). In practice we integrate up to "max ¼ 40
h&1 Mpc, which is large enough to include most correlated
pairs and to give a stable result. The second equation (right-
hand side) above allows us to relate wp to the real-space
correlation function. In particular, for a power law
!rðrÞ ¼ ðr=r0Þ&#, the second integral can be done analyti-
cally, yielding

wpðrpÞ ¼ Ar1&#
p

with A ¼ r#0!ð0:5Þ!½0:5ð# & 1Þ(=!ð0:5#Þ ; ð10Þ

where C is the Gamma function.
Figure 7 shows wpðrpÞ for the full galaxy sample and the

best-fit power-law model, which corresponds to
!rðrÞ ¼ ðr=r0Þ&# with r0 ¼ 6:14) 0:18 h&1 Mpc and
# ¼ 1:75) 0:03. This fit to the slope and amplitude of the
correlation function is obtained using points in the range
0:1 h&1 Mpc < rp < 16 h&1 Mpc; the correlation coefficient
between r0 and #, measuring the normalized covariance of
the two estimates, is* &0:5, implying that the measures are
anticorrelated to a degree. Since the jackknife estimates of
the off-diagonal terms in the covariance matrix are noisy
and lead to an unstable matrix inversion in the $2 minimiza-
tion (unless we confine the fit to only a few bins), the best-fit
r0 and # values were obtained from the diagonal terms only.
As a result, we are not guaranteed to have unbiased esti-
mates of these parameters, but the visually evident goodness
of fit suggests that any such bias is negligible. The errors on
r0 and # were obtained from the variance in the estimates of
these quantities among the jackknife subsamples, again
using only the diagonal terms in the covariance matrix, as
described in the Appendix.

The real-space correlation function is characterized much
more accurately by a power law than the redshift-space cor-
relation function. Our value of # agrees well with results
from previous redshift surveys and angular clustering stud-
ies (e.g., Davis & Peebles 1983; Loveday et al. 1995; Table 1)
and with the slope derived from the SDSS angular correla-
tion function (Connolly et al. 2001). The value of r0 is also
similar to that obtained from other optically selected galaxy
samples, as can be seen in Table 1, though in some cases

TABLE 1

Clustering Results of Different Galaxy Redshift Surveys

Survey Ngal s0 #s r0 #
%12

(1 h&1Mpc)

SDSSa ....... 29,300 *8.0 *1.2 6.14) 0.18 1.75) 0.03 640) 60
2dFb.......... 15,123c . . . . . . 4.92) 0.27 1.71) 0.06 . . .
LCRSd ...... 26,400 6.3) 0.3 1.52) 0.03 5.06) 0.12 1.86) 0.03 570) 80
PSCze ........ 15,400 5.0 1.2 3.7 1.69 350) 60
CfA2f ........ 12,800 *7.5 *1.6 5.8 1.8 540) 180
ORSg ........ 8,500 7.6) 1.2 1.6) 0.1 6.1) 1.2 1.6) 0.1 . . .

Note.—Values of s0 and r0 are in units of h&1Mpc, %12 is in units of km s&1.
a We use comoving distances assuming "m ¼ 0:3 "# ¼ 0:7. With an Einstein–de Sitter model we get

r0 ¼ 5:7) 0:2 and %12ð1 h&1 MpcÞ ¼ 590) 50. Note that a power law is a poor fit to !ðsÞ, though a
good fit to !rðrÞ.

b Norberg et al. 2001; these are the fit parameters for a volume-limited sample of galaxies with
&19:5 < MbJ < &20, close toM+ ¼ &19:7 (Folkes et al. 1999).

c Here 15,123 refers to a volume-limited sample, drawn from a flux-limited sample containing
*160,000 galaxies.

d Tucker et al. 1997; Jing et al. 1998 (both assuming an EdSmodel).
e Jing et al. 2002, using 9400 galaxies (EdS cosmology). As galaxies are selected from the IRAS cata-

log, they are preferentially late types, and thus are more directly comparable to our ‘‘ blue ’’ galaxies
sample, see x 5.1.

f Values of s0 and #s are taken from de Lapparent, Geller, &Huchra 1988, using 1,800 galaxies of first
slice; r0 and # are based on Fig. 3 ofMarzke et al.’s 1995 analysis of CfA2 and SSRS2; %12 fromMarzke
et al. 1995.

g Hermit et al. 1996.

Fig. 7.—Projected correlation function wpðrpÞ ( filled circles). The solid
line is the best-fit power-law for wp, which implies the denoted power-law
for the real-space correlation function !rðrÞ. The fit is performed for
rp < 16 h&1Mpc.

180 ZEHAVI ET AL. Vol. 571
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ξ(r) Matter, 
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APM Survey



Dark Matter Halos
• Halos are  
“building blocks”  
of Nonlinear 
structure 

• Virialized regions 
have typical 
average densities 
ρVIR ∼ 102〈ρ〉 = ΩmρCRIT

• Halo abundances 
and clustering are 
well understood in 
simulations



The Halo Model

Halo, M1

satellite
galaxies

r

Halo, M2

r

• Compute correlation statistics using halos as the 
fundamental unit of structure: ξ(r)=ξ1H(r)+ξ2H(r)

satellite
galaxies

central 
galaxycentral 

galaxy



The Halo Model

• Count pairs in individual halos...

ξ(r) = ξ1h(r) + ξ2h(r)

ξ1h(r) =
1
n̄2

g

∫
〈Ngal(Ngal − 1)〉 Λ(r, M)

dn

dM
dM

• Λ(r,M) is the convolution of a halo profile with 
itself, and Λ∝Rvir-3∝M-1 at r/Rvir ≪ 1



The Halo Model

• On large scales, pair counts reflect the galaxy 
number-weighted halo pair count

ξ(r) = ξ1h(r) + ξ2h(r)

ξ2h(r) =
ξmm(r)

n̄2
g

[∫
bh(M) 〈Ngal〉

dn

dM
dM

]2

• bh(M) is the “halo bias” and 〈Ngal(M)〉 is the 
average number of galaxies in halo of mass M
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Central & Satellites



Central & Satellites
• Halos with masses above some minimum mass 

Mmin contain Ngal = 1 + Ns galaxies with Ns a 
Poisson-distributed random variable...

ξ1h(r) =
1
n̄2

g

∫

Mmin

[
〈Ns〉2 + 2 〈Ns〉

]
Λ(M)

dn

dM
dM

ξ2h(r) =
ξmm(r)

n̄2
g

[∫

Mmin

bh(M) [1 + 〈Ns〉]
dn

dM
dM

]2



Toy Model:  One Mass
• Consider a Universe where galaxies are in halos 

of only one mass, dn/dM ➞ NHδ(M-MH)

ξ1h =

[
〈Ns〉2 + 2 〈Ns〉

]

[1 + 〈Ns〉]2
Λ

NH

ξ2h = b2
hξmm : average halo bias

n̄g = (1 + 〈Ns〉)NH : galaxy density



Toy Model:  One Mass

• If the satellite number is large 

ξ1h〈Ns〉#1→ Λ
NH

• If the satellite number is small 

ξ1h〈Ns〉#1→ 2 〈Ns〉
Λ

NH



Mass Function

∝M-1

M*



Toy Model:  One Mass

• If the satellite number is large (M<M*), 

ξ1h〈Ns〉#1→ Λ
NH

• If the satellite number is small and M<M*

ξ1h〈Ns〉#1→ 2 〈Ns〉
Λ

NH

: mass independent 
number at r≪Rvir

∝〈Ns〉



Toy Model

toy model with 
two halo masses



Toy Model

increasing 〈Ns〉 
by factors of 10



Toy Model
increasing MH 
by factors of 10

M*



Full Halo Model

〈Ns〉 = (M/M1)



Full Halo Model

M*
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Physical Model
• Explore a 
physical model 
for the origin 
and evolution of 
clustering based 
on subhalos

Subhalos
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For the binomial distribution

P (N = n|M) =
NM

n!(NM − n)!
pn

M (1 − pM )NM−n, (9)

with mean 〈N〉M = NMpM , the second moment is 〈N(N−
1)〉M = NMpM (NMpM − pM ) and the higher-order mo-
ments are given by

〈N(N − 1)...(N − j)〉 = α2(2α2 − 1)...(jα2 − j +1)〈N〉j+1,
(10)

where the parameter α is defined as

α2
M ≡ 〈N(N − 1)〉M/〈N〉2M . (11)

The function α2
M is a convenient measure of how differ-

ent P (N |M) is from the Poisson distribution, for which
α2

M = 1. For distributions narrower than the Poisson
α2

M < 1, while for broader distributions α2
M > 1. Semi-

analytic models and hydrodynamic simulations predict a
significantly sub-Poisson P (N |M) distribution at low 〈N〉
(Berlind et al. 2003 and references therein). Moreover, it
has been shown that a sub-Poisson P (N |M) distribution
is required in order to produce a correlation function of
the observed power-law form. (Benson et al. 2000b; Sel-
jak 2000; Peacock & Smith 2000; Scoccimarro et al. 2001;
Berlind & Weinberg 2002)

6. results

6.1. The Halo Occupation Distribution

We start discussion of our results with the factorial mo-
ments of the HOD defined in the previous section. Figure 4
shows the first moment of the HOD for the halo sample
with number density of 5.86 × 10−2h3 Mpc−3 (Vmax >
70 km s−1). Given that the halo samples are constructed
by simply selecting all halos with circular velocities larger
than a threshold value, the HOD will have a trivial com-
ponent corresponding to the host halo:

Nc =

{

1 for Mh ≥ Mmin

0 for Mh < Mmin
(12)

where Mmin is the mass corresponding to the threshold of
the maximum circular velocity of the sample. The first
moment of this component is simply a step-like function
shown in the bottom panel of Figure 4 by the dotted line.
Note that halo samples are defined using a threshold Vmax,
while the HOD is plotted as a function of halo mass. The
transition from zero to unity is therefore smooth because
certain scatter exists between Vmax and halo mass (Bullock
et al. 2001b). We find that the scatter is approximately
gaussian and its effect on 〈Nc〉 can be described as

〈Nc〉 = erf(5 [1− M/Mmin]). (13)

The second HOD component corresponds to the proba-
bility for a halo of mass M to host a given number of sub-
halos Ns = N − 1: Ps(Ns|M) ≡ P (Ns + 1|M). The first
moment of this component is shown by the long-dashed
line. As we noted above, this separation is equivalent to
differentiating between central and satellite galaxies in ob-
servations or in semi-analytic models.

The first three moments of Ps(Ns|M) are related to the
moments of the overall HOD as follows

〈Ns〉 = 〈N〉 − 1; (14)

〈Ns(Ns − 1)〉 = 〈N(N − 1)〉 − 2〈N〉 + 2; (15)

〈Ns(Ns − 1)(Ns − 2)〉 = 〈N(N − 1)(N − 2)〉 −

3〈N(N − 1)〉 + 6 (〈N〉 − 1) .(16)

Fig. 4.— Bottom panel: the first moment of the halo occupa-
tion distribution, as a function of host mass for the halo sample
with number density n = 5.86 × 10−2h3Mpc−3 in the ΛCDM80

simulation at z = 0. The solid line shows the mean total number
of halos including the hosts, while the long-dashed line shows the
mean number of satellite halos. The error bars show the uncertainty
in the mean. The dotted line shows the step function corresponding
to the mean number of “central” halos. Note that by definition, the
solid line is the sum of the dotted and long-dashed lines. The two
short-dashed lines indicate the dependencies ∝ Mh and M0.8

h . Up-

per panel: the parameter α ≡ 〈N(N − 1)〉1/2/〈N〉 for the full HOD
(solid points) and the HOD of satellite halos (open points). The
dotted line at α = 1 shows the case of a Poisson distribution. Note
that the HOD becomes sub-Poisson at small host masses. However,
the HOD of satellites remains close to Poisson down to masses an
order of magnitude smaller than for the full HOD. Indeed, if the
satellite HOD is Poisson, α = (1− 1/〈N〉2)1/2 for the full HOD [see
eq. (17)]. This expression is shown by the dot-dashed line, which de-
scribes the points very well. The full HOD at small Mh is also well
described by the nearest integer distribution [see eqs. (7) and (8)]
shown by the dashed line.

As can be seen from Figure 4, 〈Ns〉 has a simple power
law form, while the shape of the full 〈N〉 (shown by the
solid line) is complicated and consists of a step, a shoul-
der, and the high-mass power-law tail. The parameter α
plotted in the upper panel indicates that both P (N |M)
and Ps(Ns|M) are close to Poisson at high masses and
become sub-Poisson as the host mass approaches the min-
imum mass of the sample. However, the satellite HOD
can be described by the Poisson distribution down to host
masses an order of magnitude smaller than the full HOD.
The latter is well described by the nearest integer distribu-
tion (see eqs. [7] and [8]) at small Mh. This result suggests
a simple model for the HOD: every host halo contains one
halo (itself) and a number of satellite subhalos drawn from
a Poisson distribution whose mean is a power-law function
of the host halo mass.

Note that the Poisson shape of the subhalo HOD at
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the dark matter correlation function, on the other hand,
increases with redshift revealing strongly time-dependent
bias. At the present-day epoch, there is a slight antib-
ias at r ! 1h−1 Mpc. Interestingly, the magnitude of
the anti-bias is considerably smaller than in the higher-
normalization (σ8 = 1) simulation (see Fig. 7 in Coĺın
et al. (1999) as well as Fig. 9 in this paper). This is
consistent with the picture where the anti-bias is caused
by the halo disruption processes in high-density regions
(Kravtsov & Klypin 1999), as groups and clusters in the
low-normalization model form later and the disruption
processes have less time to operate. The exclusion effect
in the two-halo component is significant at z = 0, but
diminishes at earlier epochs. This is due mainly to the
systematic decrease in the minimum mass of the sample
for the same number density at higher z. The smaller
minimum mass means smaller halo sizes. The smaller size
is also due to the definition of the virial radius with re-
spect to the mean density. Even for the same mass higher
mean density of the Universe at higher redshifts results in
a smaller virial radius. Smaller sizes of halos in the sam-
ple result in smaller minimum pair separation for isolated
objects. Thus, 2-halo term extends to smaller r.

At z = 0 the halo CF can be well approximated by a
power law at all probed scales (0.1−10h−1 Mpc). The ap-
proximate power-law shape is due to the relatively smooth
transition between the two- and one-halo components of
the CF. At higher redshifts, however, the transition is more
pronounced and occurs at progressively smaller scales. This
results in a significant steepening of the CF at ∼ 0.3 −
1h−1 Mpc. The halo model analysis shows that contri-
bution of pairs in massive galaxy clusters is critical for
a smooth transition between 1- and 2-halo contributions
(Berlind & Weinberg 2002). At earlier epochs, clusters
are rare or non-existent which explains a more pronounced
transition.

Indeed, power-law fits using the range of scales 0.1 −
8h−1 Mpc give systematically smaller values of the scale
radius r0 and steeper slope γ than the fits over range
∼ 0.3 − 8h−1 Mpc, as can be seen in Figure 12. All
of the fits for the ΛCDM80 simulations are performed at
r ≤ 8h−1 Mpc, as the CF shape becomes affected at scales
larger > 0.1Lbox (Coĺın et al. 1997; Coĺın et al. 1999). We
also checked this by comparing matter correlation func-
tions in the simulation to the model of Smith et al. (2003).
We find that simulation results agree well with the model
at scales < 0.1Lbox at z = 0 and at < 0.2 − 0.3Lbox at
higher redshifts.

The power-law shape of the correlation function is rather
remarkable, as it appears to result from a sum of non-
power law components. We checked the components of the
correlation function due to pairs of different types: central-
satellite, satellite-satellite, and central-central pairs. The
component CFs have a variety of shapes all deviating strongly
from power law. Yet, the sum is close to the power law.
This indicates that the power-law shape of the galaxy cor-
relation function may well be a coincidence, as noted by
Benson et al. (2000b) and Berlind & Weinberg (2002).

Comparing the correlation functions in the ΛCDM60

and ΛCDM80 simulations (Figure 9), we find that the cor-
relation functions of objects with the same number density
are similar. This is not surprising in light of the approxi-

Fig. 9.— The correlation function and bias for the n =
1.52×10−2h3 Mpc−3 sample in the ΛCDM60 (dashed) and ΛCDM80

(solid) simulations. Top panel: The bias b(r) ≡
√

ξhh(r)/ξmm(r).
Bottom panel: The halo-halo correlation function in the two sim-
ulations compared to the correlation function of the APM galaxies
(Baugh 1996). The error-bars indicate the “jack-knife” one sigma
errors, computed using the eight octants of the simulation cube, and
are larger than the Poisson error at all scales.

mate universality of the HOD demonstrated in the previ-
ous section (see Figs. 5 and 6). Figure 9 also shows that
the amplitude and shape of the CF at z = 0 is in good
agreement with that of the galaxies in the APM survey.
As noted by Kravtsov & Klypin (1999) and Coĺın et al.
(1999), the close agreement of halo and galaxy correlation
functions indicates that the overall clustering of the galaxy
population is determined by the distribution of their dark
matter halos.

Figure 10 shows a comparison of the projected correla-
tion functions:

wp(rp) = 2

rmax
∫

0

ξ([r2
p + y2]1/2)dy, (19)

in the volume-limited sample of bright, Mr < −21, galax-
ies (Zehavi et al. 2003) and halo samples of three represen-
tative number densities in the ΛCDM80 simulation. The
upper integration limit was set to rmax = 40h−1 Mpc, to
mimick the procedure used to estimated the observed CF.
In taking the projection integral, we extrapolate the sim-
ulated CF from 8h−1 Mpc (the largest reliable scale of the
simulation) to large scales using the correlation function
of dark matter predicted by the Smith et al. (2003) model
rescaled to match the amplitude of the halo correlation
function at 8h−1 Mpc. Note that the SDSS galaxies have
a number density of 1.1 × 10−3h3 Mpc−3 and their CF
should therefore be compared to the solid line. The fig-

Kravtsov et al. 2004:  also see Kravtsov & Klypin ’99, Colin et al. ’99, 
Conroy et al. 2006, many others
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Gnedin & Ostriker 1999; Gnedin, Ostriker, & Hernquist 2000; Taffoni et al. 2002; 
Taylor & Babul 2002; Zentner & Bullock 2003; Zentner et al. 2005a,2005b
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Timescales

tdf ∼ tdyn

(
Mhalo

10Msub

)

tdyn ∼
1√

Gρvir
∼ 1

10
1
H

orbital timescales:

dynamical friction 
timescales:

tmerge ∼
d lnD(a)

d ln a

1
H

major merger 
timescales:
(∆M/M > 10%)
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Fig. 1.— Left Panels: First moment of the Halo Occupation Distribution for subhalos computed from Z05. Each panel shows the mean
occupation number as a function of host halo mass: log(Mmin) = 11.4, 11.7, and 12.3h−1M". Mmin values correspond to computed galaxy
number densities for three SDSS r-band Luminosity thresholds: Mr < −18.5,−19.5, and − 20.5, respectively (Zehavi et al. 2005b). The
black (dash-dotted line) curve represents our model that considers no gravitational effects, designated as No Effects. The green curve
(dashed line) is the Fric. Only model which only considers the effects of dynamical friction, while the Strip. Only only considers tidal
stripping (blue, dotted line). Shown in red (solid line) is the 〈N〉 for our full model, Full, which turns on both dynamical effects. Right
Panels: The dependence of the shape of the correlation function on gravitational processes as a function of maximum host halo circular
velocity. ξ(r) is computed using the halo model with the mean occupation statistics from the corresponding Mmin panel to the left.
Correlation functions are shown for z = 0.
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Fig. 1.— Left Panels: First moment of the Halo Occupation Distribution for subhalos computed from Z05. Each panel shows the mean
occupation number as a function of host halo mass: log(Mmin) = 11.4, 11.7, and 12.3h−1M". Mmin values correspond to computed galaxy
number densities for three SDSS r-band Luminosity thresholds: Mr < −18.5,−19.5, and − 20.5, respectively (Zehavi et al. 2005b). The
black (dash-dotted line) curve represents our model that considers no gravitational effects, designated as No Effects. The green curve
(dashed line) is the Fric. Only model which only considers the effects of dynamical friction, while the Strip. Only only considers tidal
stripping (blue, dotted line). Shown in red (solid line) is the 〈N〉 for our full model, Full, which turns on both dynamical effects. Right
Panels: The dependence of the shape of the correlation function on gravitational processes as a function of maximum host halo circular
velocity. ξ(r) is computed using the halo model with the mean occupation statistics from the corresponding Mmin panel to the left.
Correlation functions are shown for z = 0.

• Mass loss in dense environments is a key 
ingredient to building a power-law ξ
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Fig. 4.— The correlation function for a fixed minimum halo mass
(log(Mmin) = 12.3)) as a function of redshift. The one-halo and
two-halo terms are shown to highlight how just the right balance
between the two contributions can yield a power-law ξ(r). Changes
in the one-halo term are what dominate the power-law shape, and
the perfect balance is struck right at z = 0.
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Fig. 5.— The accretion versus destruction rate of subhalos over
cosmic time. Producing a power-law ξ(r) relies on the balance
between the rate of subhalo mergers onto their hosts halos, and
the destruction of substructure due to gravitational effects like tidal
stripping and dynamical friction.

4.3. The Balance Between Accretion and Destruction

We have just seen how the shape of ξ(r) is affected
by the evolution of the HOD as a function of mass and
redshift to coincidentally produce a power-law at z = 0.
But what really drives this behavior? We know that

ξ(r) depends on the number of satellites, and this num-
ber will vary as satellites are accreted and destroyed. If
the rate at which satellites are accreted is greater than
the rate at which they are destroyed, then more sub-
structure will be present and ξ(r) will be boosted on
small scales. Thus, the balance between accretion and
destruction will determine if the number of satellites is
increasing or decreasing. In figure 5 we demonstrate this
constant competition between the accretion rate and de-
struction rate of subhalos over cosmic time by consid-
ering our No Effects model where all accreted subhalos
survive (i.e. all galaxies survive) to our Full model where
dynamical effects lead to the erasure of substructure. For
the host halo mass threshold of log(Mhalol) = 13.4 we
count all the subhalos that have accreted at any given
epoch with a Vmax > 100 kms−1 (maximum final circu-
lar velocity normalized over 1000 realizations). For the
destruction rate, we count subhalos that accreted onto
the host with Vmax > 100 kms−1, but then drop below
Vmax = 70 kms−1 at some later time. We chose a rough
estimate of a destruction threshold of Vmax = 70 kms−1

to consider the fact that some time will elapse while
the outer regions of the subhalo are stripped before the
galaxy at the center of the sub is affected. We stress that
this figure is for purely illustrative purposes to demon-
strate the balance of the accretion and destruction rates.
This figure is for one particular halo mass and would not
look the same for a different choice in halo mass, however
the trend would be the same. It is clear that the accre-
tion rate dominates the destruction rate at earlier times
(see, e.g., Fakhouri & Ma (2008); Stewart et al. (2009)) ,
and both the accretion rate and the destruction rate are
decreasing as we move towards the present epoch (the
former due to dark energy, and the latter due to the con-
tinual decline in the mean density of the universe), but
the destruction rate is dropping less rapidly. This results
in a continual decrease in the total number of satellites,
and thus a decrease in the small-scale ξ(r) (as seen in
figure 4). The fact that we happen to be at the specific
epoch where just the right balance between accretion and
destruction is taking place in order to yield a power-law
fortifies the conclusion that there is nothing physically
preferential about an observed low-redshift power-law, it
is simply a coincidence.

5. ACHIEVING A POWER-LAW CORRELATION
FUNCTION

Up to this point, we have seen how the correlation
evolves to a near power-law at z = 0 for Mmin samples
corresponding to ∼ L∗ and dimmer galaxy populations.
This was shown to be a result of the balance between the
destruction and accretion rates of subhalos, which is a di-
rect result of the role that gravitational effects such as
tidal stripping and dynamical friction play. However, this
does not mean that a power-law can never be achieved at
a higher redshift or at some time in the future. In other
words, it may be instructive to explore the HOD param-
eter space to find at what Mmin and at what redshift a
power-law ξ(r) can be achieved.

5.1. The Power-Law Parameter Space for a Fixed
Number Density of Galaxies

By means of our dynamical model we have shown how
destruction of satellites by turning on gravitational ef-
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• M* evolves significantly with redshift, until z~0
• Large halos are much more rare at high z
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Fig. 3.— Left panel :First moment of the Halo Occupation Distribution for subhalos as a function of redshift for our full model (Full) for
3 different minimum host halo mass thresholds. Right panel : The evolution of ξ(r) (scaled by a power-law) as a function of redshift. For
any Mmin cut-off it is clear how gravitational effects leading to the destruction of substructure cause ξ(r) to evolve towards being nearly
power-law as we reach the present epoch, and then once again deviate from a power-law as we move into the future.

6

Fig. 3.— Left panel :First moment of the Halo Occupation Distribution for subhalos as a function of redshift for our full model (Full) for
3 different minimum host halo mass thresholds. Right panel : The evolution of ξ(r) (scaled by a power-law) as a function of redshift. For
any Mmin cut-off it is clear how gravitational effects leading to the destruction of substructure cause ξ(r) to evolve towards being nearly
power-law as we reach the present epoch, and then once again deviate from a power-law as we move into the future.

actual

Mass Function 
effect Only

4x fewer 
subhalos

• As observed, Coil et al. 05, Ouchi et al. 06, Lee et al. 06, ...
• Similarly for SCDM (ΩM=1) cosmology, etc.

ξ(r) at z=3



(Very) Low Redshift

• Recall the timescale for mergers goes roughly 
like 

tmerge ∼
d lnD(a)

d ln a

1
H

• When ΩΛ∼ΩM the growth of structure slows due 
to the dark energy and  

d lnD(a)
d ln a

< 1
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Fig. 4.— The correlation function for a fixed minimum halo mass
(log(Mmin) = 12.3)) as a function of redshift. The one-halo and
two-halo terms are shown to highlight how just the right balance
between the two contributions can yield a power-law ξ(r). Changes
in the one-halo term are what dominate the power-law shape, and
the perfect balance is struck right at z = 0.
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Fig. 5.— The accretion versus destruction rate of subhalos over
cosmic time. Producing a power-law ξ(r) relies on the balance
between the rate of subhalo mergers onto their hosts halos, and
the destruction of substructure due to gravitational effects like tidal
stripping and dynamical friction.

4.3. The Balance Between Accretion and Destruction

We have just seen how the shape of ξ(r) is affected
by the evolution of the HOD as a function of mass and
redshift to coincidentally produce a power-law at z = 0.
But what really drives this behavior? We know that

ξ(r) depends on the number of satellites, and this num-
ber will vary as satellites are accreted and destroyed. If
the rate at which satellites are accreted is greater than
the rate at which they are destroyed, then more sub-
structure will be present and ξ(r) will be boosted on
small scales. Thus, the balance between accretion and
destruction will determine if the number of satellites is
increasing or decreasing. In figure 5 we demonstrate this
constant competition between the accretion rate and de-
struction rate of subhalos over cosmic time by consid-
ering our No Effects model where all accreted subhalos
survive (i.e. all galaxies survive) to our Full model where
dynamical effects lead to the erasure of substructure. For
the host halo mass threshold of log(Mhalol) = 13.4 we
count all the subhalos that have accreted at any given
epoch with a Vmax > 100 kms−1 (maximum final circu-
lar velocity normalized over 1000 realizations). For the
destruction rate, we count subhalos that accreted onto
the host with Vmax > 100 kms−1, but then drop below
Vmax = 70 kms−1 at some later time. We chose a rough
estimate of a destruction threshold of Vmax = 70 kms−1

to consider the fact that some time will elapse while
the outer regions of the subhalo are stripped before the
galaxy at the center of the sub is affected. We stress that
this figure is for purely illustrative purposes to demon-
strate the balance of the accretion and destruction rates.
This figure is for one particular halo mass and would not
look the same for a different choice in halo mass, however
the trend would be the same. It is clear that the accre-
tion rate dominates the destruction rate at earlier times
(see, e.g., Fakhouri & Ma (2008); Stewart et al. (2009)) ,
and both the accretion rate and the destruction rate are
decreasing as we move towards the present epoch (the
former due to dark energy, and the latter due to the con-
tinual decline in the mean density of the universe), but
the destruction rate is dropping less rapidly. This results
in a continual decrease in the total number of satellites,
and thus a decrease in the small-scale ξ(r) (as seen in
figure 4). The fact that we happen to be at the specific
epoch where just the right balance between accretion and
destruction is taking place in order to yield a power-law
fortifies the conclusion that there is nothing physically
preferential about an observed low-redshift power-law, it
is simply a coincidence.

5. ACHIEVING A POWER-LAW CORRELATION
FUNCTION

Up to this point, we have seen how the correlation
evolves to a near power-law at z = 0 for Mmin samples
corresponding to ∼ L∗ and dimmer galaxy populations.
This was shown to be a result of the balance between the
destruction and accretion rates of subhalos, which is a di-
rect result of the role that gravitational effects such as
tidal stripping and dynamical friction play. However, this
does not mean that a power-law can never be achieved at
a higher redshift or at some time in the future. In other
words, it may be instructive to explore the HOD param-
eter space to find at what Mmin and at what redshift a
power-law ξ(r) can be achieved.

5.1. The Power-Law Parameter Space for a Fixed
Number Density of Galaxies

By means of our dynamical model we have shown how
destruction of satellites by turning on gravitational ef-
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Fig. 3.— Left panel :First moment of the Halo Occupation Distribution for subhalos as a function of redshift for our full model (Full) for
3 different minimum host halo mass thresholds. Right panel : The evolution of ξ(r) (scaled by a power-law) as a function of redshift. For
any Mmin cut-off it is clear how gravitational effects leading to the destruction of substructure cause ξ(r) to evolve towards being nearly
power-law as we reach the present epoch, and then once again deviate from a power-law as we move into the future.

6

Fig. 3.— Left panel :First moment of the Halo Occupation Distribution for subhalos as a function of redshift for our full model (Full) for
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power-law as we reach the present epoch, and then once again deviate from a power-law as we move into the future.• At any mass (“luminosity”) threshold, the 

correlation function evolves through a power-law



Conclusion
1. The near power-law correlation function of 

galaxies appears to be a coincidence
1.1. It relies on several conspiracies
1.2. It depends upon luminosity (mass)
1.3. Each luminosity threshold will evolve 

through a nearly power law stage
1.4.  Strong deviations from power laws should 

prevail in the past and in the future


