EXPLOITING WEAK GRAVITATIONAL LENSING TO CONSTRAIN DARK ENERGY

ANDREW R. ZENTNER UNIVERSITY OF PITTSBURGH

Sunday, September 5, 2010

COLLABORATORS

DOUGLAS RUDD (IAS)

ANDREY KRAVTSOV (U. CHICAGO)

ANDREW HEARIN (U. PITTSBURGH)

WAYNE HU (U. CHICAGO)

BASED ON:

Rudd, ARZ, Kravtsov (2008) ARZ, Rudd, Hu (2008) Hearin & ARZ (2009) Hearin et al. (2010)

OUTLINE

1. The "Standard Model" of Cosmology and the "Dark Sector" **1.A.** Dark Matter - Brief Mention **1.B.** Dark Energy 2. Gravitational Lensing: A Probe of the Dark Energy 3. The Theoretical Challenge: Galaxy Formation 4. The Future

THE CURRENT COSMIC ENERGY BUDGET

DARK MATTER

HTTP://LAMBDA.GSFC.GOV

MICROWAVE BACKGROUND IMAGE OF THE UNIVERSE 13 BILLION YEARS AGO

NECESSARY TO GROW STRUCTURE

CONTEMPORARY DISTRIBUTION OF GALAXIES

HTTP://IPAC.CALTECH.EDU

COSMIC EXPANSION

time t_1 : distance is $a_1 |x_2 - x_1|$

COSMIC EXPANSION

Georges Lemaître

 $= \frac{3}{8\pi G a^2}$

Georges Lemaître

Sunday, September 5, 2010

Georges Lemaître

COSMOLOGICAL DISTANCES

In an <u>accelerating</u> Universe, the distances between objects are <u>greater</u> for a <u>fixed factor of expansion</u>

SUPERNOVA IA DISTANCES REVEAL ACCELERATION

• $\Omega_{DE}=0$ ruled out at 5σ from this data alone

THE CURRENT COSMIC ENERGY BUDGET

DARK ENERGY

DARK ENERGY PHENOMENOLOGY

- Einstein's cosmological constant or a vacuum energy with P=-o are indistinguishable
- For lack of theory, cosmologists benchmark experiments by their ability to measure w=P/Q
- The dark energy density dilutes as $0 \propto a^{-3(1+w)}$
- Time dependence is usually constrained using a Taylor expansion, $w(a) = w_0 + (1-a)w_a$

CONTEMPORARY DARK ENERGY CONSTRAINTS

 w is best measured at a
 "pivot epoch"
 when w≡wpiv

• Best current limit on w=-1 and constant is $\sigma_{piv} \approx 0.15$

Dark Energy: Harder than catching Bin-Laden

Granditational Lonsing

NASA HST

NASA HST

NASA HST

ON THE COSMOLOGICAL DISTORTION EFFECT

JEROME KRISTIAN Washburn Observatory, University of Wisconsin Received August 25, 1966

ABSTRACT

Detailed equations for the effect are given, and an unsuccessful attempt to measure it on 200-inch photographs of clusters of galaxies is described. The results give an upper limit of 2×10^{-18} yr⁻² for all components of the incident magnetic-type gravitational field and 0.6×10^{-18} yr⁻² for at least some of them. These numbers are not very stringent tests of the Friedmann and steady-state models, but seem to be about the best that can be done with this kind of measurement.

A GRAVITATIONAL LENS

ACTUAL SOURCE

D_{LS}: Lens-Source Distance

IMAGE OF SOURCE

D_{OL}: Observer-Lens Distance

DEFLECTION ANGLE

() « LENS MASS

Amount of Shear ~ Mass × D_{LS} D_{OL}/D_{OS}

LENSING SHEAR

TRUE GALAXY POSITION

LENSING SHEAR

OBSERVED GALAXY POSITION

WEAK LENSING

deflection $\sim \int (\partial \Phi / \partial x_{\perp}) dlos$

INTEGRATE NUMEROUS DEFLECTIONS, NO DISTINCT "LENS"

WEAK LENSING SHEAR

http://aether.lbl.gov/Weak_Lensing

UNLENSED, "SPHERICAL GALAXIES"

LENSED GALAXIES

Find that distortion here...

Sunday, September 5, 2010

AN ANALOGY: CMB POWER TEMPERATURE SPECTRUM

AN ANALOGY: CMB POWER TEMPERATURE SPECTRUM

MULTIPOLE MOMENT

NEXT GENERATION EXPERIMENTS

Dark Energy Survey (DES)

First Light ~2011, First Results ~2013

Large Synoptic Survey Telescope (LSST) First Light ~2015,

First Light ~2015, First Results ~2017

Joint Dark Energy Mission JDEM/SNAP

> 2019 ?

WEAK LENSING CONSTRAINTS ON DE

MULTIPOLE MOMENT

DARK ENERGY CONSTRAINTS

Sunday, September 5, 2010

Unfortunately, the Universe contains galaxies ...

THE DIFFICULTY: Modeling Galaxy Formation

Simulations from Identical Initial Conditions

Rudd, AZ, & Kravtsov 2008

How Galaxies Affect Shear Spectra

Can lead to ~6σ
"bias" in inferred
cosmological
parameters (w₀,w_a)!

• How can we test dark energy or our theory of gravity?

HOW DOES THIS AFFECT THE DARK ENERGY PROGRAM?

UNACCOUNTED BIAS PUTS YOU HERE

WA

Wo

"DEGRADE" EXPERIMENT FOR SYSTEMATIC ERROR

UNACCOUNTED BIAS PUTS YOU HERE

WA

 \mathbf{O}

AWESOME

"DEGRADE" EXPERIMENT FOR SYSTEMATIC ERROR

CALIBRATE BIAS?

Wo

TESTING GRAVITY

EXCISE SMALL SCALES?

- AT RIGHT: Scaling of statistical errors with maximum multipole exploited
- Excising nonlinear information to mitigate bias expands statistical errors by a factor of ~2-4

DARK MATTER HALOS

HALOS ARE
 NONLINEAR BUILDING
 BLOCKS OF
 STRUCTURE DEFINED
 TO HAVE AVERAGE
 DENSITIES OF A FEW
 HUNDRED TIMES THE
 MEAN WITHIN THEIR
 VIRIAL RADII

• $Q_{NFW} \propto (C R/R_{VIR})^{-1} (1+C R/R_{VIR})^{-2}$ • "C" is dimensionless Halo "concentration Parameter"

THE HALO MODEL

 Compute correlation statistics using halos as the fundamental unit of structure

HALOS WITH GALAXIES

Modify Halo structure, account for contraction, compute lensing spectra

Halos in baryonic simulations look like NFW halos with modified concentrations

HALOS WITH GALAXIES

• MODIFIED HALO CONCENTRATION RELATION RELATIVE TO THE STANDARD N-BODY RESULT

SPECTRUM MODEL WITH CONTRACTED HALOS

residual with respect to galaxy formation <u>simulation</u>

DARK ENERGY CONSTRAINTS

- Calibration is both feasible and profitable, recall 300% degradation from excising small scales
- **Biases < 10% of statistical errors with simple model**

TESTING GRAVITY

HALO STRUCTURE

"Galaxy formation" parameters constrained at interesting levels

SHEAR TOMOGRAPHY

PHOTO-Z & NIL STRUCTURE

 Treatment of nonlinear structure influences the goals and approaches of forthcoming experiments

THE FUTURE

 Develop a better understanding of nonlinear cosmological structure growth, including:
 Galaxy Formation Processes
 Energy injection by Supernovae & Active Galaxies ...

2. A Simulation program is necessary (and underway) and will broaden the scope of future missions

3. We may soon have unprecedented constraints on both dark energy and galaxy formation