$M_{\chi}^{\to b\bar{b}} > 40^{+200}_{-21} \text{GeV} \quad M_{\chi}^{\to \tau\bar{\tau}} > 19^{+61}_{-6} \text{GeV}$

Savvas M. Koushiappas

Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with data from the Fermi Gamma-ray Space Telescope

> Alex Geringer-Sameth^{*} and Savvas M. Koushiappas[†] Department of Physics, Brown University, 182 Hope St., Providence, RI 02912

Based on

Gamma-ray flux

$$\Phi_{\rm PP} = \frac{\langle \sigma v \rangle}{8\pi M_{\chi}^2} \int_{E_0}^{M_{\chi}} \sum_f B_f \frac{dN_f}{dE} dE_f$$

Quantity of interest

$$J \equiv \int_{\Delta\Omega(\psi)} \int_{\ell} [\rho(\ell, \psi)]^2 \, d\ell \, d\Omega(\psi)$$

Constraints from Dwarf Galaxies: Usual approach to the problem

- 1. Use photon events from Fermi-LAT
- 2. Construct a complicated theoretical model which in principle characterizes the background
- 3. Compute the signal/noise ratio (and place bound)

Very difficult modeling of the background (unless you are in Fermi!)

Constraints from Dwarf Galaxies: Usual approach to the problem

- 1. Use photon events from Fermi-LAT
- 2. Construct a complicate theoretical model which in principle characterizes the background
- 3. Compute the signal/noise ratio (and place bound)

This work

Main assumption:

Whatever the processes are which give rise to the photon events nearby each dwarf, these same processes are also at work in the direction of the dwarf.

This work

Main assumption:

Whatever the processes are which give rise to the photon events nearby each dwarf, these same processes are also at work in the direction of the dwarf.

This work

Main assumption:

Whatever the processes are which give rise to the photon events nearby each dwarf, these same processes are also at work in the direction of the dwarf.

Not new:

- Particle physics
- Cerenkov telescopes (look at rings around source)

Data

- Fermi 3 years
- PASS 7 photon events
- Energy range: [1-100] GeV (dictated by size of PSF)
- 7 Dwarf galaxies (Bootes I, Draco, Fornax, Sculptor, Sextans, Ursa Minor & Segue 1)

Data

Blue: Poisson distribution

Red: Empirically derived PMF

Vertical line: Number of counts in central ROI

Geringer-Sameth & Koushiappas, arXiv:1108.2914 (PRL in press)

Neyman Construction

Shape of confidence belt must NOT depend on data (flip flopping)

```
Here, x lives in a 7-dimensional space
```

Neyman Construction

Neyman Construction

True 95% upper bound

$$\Phi_{\rm PP} = 5.0^{+4.3}_{-4.5} \times 10^{-30} \rm cm^3 s^{-1} GeV^{-2}$$

True 95% upper bound

$$\Phi_{\rm PP} = 5.0^{+4.3}_{-4.5} \times 10^{-30} \rm cm^3 s^{-1} GeV^{-2}$$

Geringer-Sameth & Koushiappas, arXiv:1108.2914 (PRL in press)

 $\frac{b\bar{b}}{M_{\chi}^{\to b\bar{b}}} > 40^{+200}_{-21} \text{GeV}$

 $\tau^+ \tau^ M_{\chi}^{\to \tau \bar{\tau}} > 19^{+61}_{-6} \text{GeV}$

See also Ackermann et al. arXiv:1108.3546

Geringer-Sameth & Koushiappas, arXiv:1008.2914

$$\begin{aligned} b\bar{b} \\ M_{\chi}^{\to b\bar{b}} &> 40^{+200}_{-21} \text{GeV} \\ \tau^{+}\tau^{-} \\ M_{\chi}^{\to \tau\bar{\tau}} &> 19^{+61}_{-6} \text{GeV} \end{aligned}$$

Caveats

J is a systematic

Ackermann et al. arXiv:1108.3546 Charbonnier et al. arXiv:1104.0412

Conclusion

 $\frac{b\bar{b}}{M_{\chi}^{\to b\bar{b}}} > 40^{+200}_{-21} \text{GeV}$

 $\tau^+ \tau^ M_{\chi}^{\to \tau \bar{\tau}} > 19^{+61}_{-6} \text{GeV}$

Geringer-Sameth & Koushiappas, arXiv:1108.2914 (PRL in press)

histo.tmp1_0

