

LUX. Some thoughts on large detectors. Comments on Xe microphysics.

Tom Shutt Case Western Reserve University

LUX

- 300 kg Xe,
 - expected 100 kg fiducial
- At Sanford lab, Homestake SD.
- First watershielded large dark matter detector

Surface Facility at Sanford Lab

- Old Warehouse
- Occupancy starting Dec 09
- LUX has been:
 - -Assembling detector
 - -Helping create Sanford Lab

Surface Operations

LUX Status

- Cryogenic run May 2011
- Full run now underway
- Davis Cavern: Beneficial occupancy March 2012
- Full running: Fall 2012

LUX Collaboration

- "Beneficial occupancy" underground March 2012
- Full running Fall 2012

LUX Upgrade

- Replace old PMTs with new
 - -Requires only new array holders, detector reassembly
 - -BG well below measured limits: total background reduced by 40

РМТ	²³⁸ U [mBq/ PMT]	²³² Th [mBq/ PMT]	⁴⁰ K [mBq/ PMT]	⁶⁰ Co [mBq/ PMT]
R8778	9.5±0.6	2.7±0.3	66±2	2.6±0.1
R11410 MOD	<0.4	<0.3	<8.3	2.0±0.2

Background in Fiducial Volume vs. Fiducial Mass for R11410 MOE T+Bot Array Upgrade

- Much cleaner potential nuclear recoil signal
- Increase in fiducial mass
- Target 2013

Some thoughts on scaling up this technology

Self-shielding in liquid xenon

Single, low-energy Compton scatter

$$P(L) \cong \frac{L}{\lambda} e^{-\frac{L}{\lambda}}$$

Effective for detectors large

compared to ~ 10 cm gamma penetration distance: few 100 kg and up.

Shielding

- 4 m water shield + 4850 ft depth adequate up to at least 20 ton s
- Liquid scintillator shield. Effective for
 - -Internal neutrons
 - -Internal gammas
 - -External, high-energy neutrons
- Titanium cryostat material
 - -Significant new construction material for low background experiments
 - -No measured contamination at limits of Oroville capability (< $\sim 0.2 \text{ mBq/kg}$)
 - -Enables active shield

175K scintillator shield

Kr Removal

• ⁸⁵Kr - beta decay

- Need Kr/Xe: 10 ppt, LZS 0.5 ppt, LZD 0.05 ppt
- Commercial Xe/Kr \sim few ppb
- Chromatographic system: < 2 ppt @ 2 kg/day production
- Scaling up current system
 - 60 kg charcoal column
 - Vacuum phase "recovery" stage
 - High capacity Xe condenser

Xe purification and analysis

- Gas phase getter purification standard
- Very high efficiency two-phase heat exchanger — Removes large thermal penalty to recondense
- In ~ 60 kg prototype, obtained purity in few days
- Cold-trap enhanced mass spectrometry: first sensitivity to required impurity levels

Thermosyphon Cryogenics

- Uniquely suitable for very large scale.
 - Extremely high capacity: equivalent to ~1 m
 Ø Cu bar.
 - -Remote deployment of multiple cold heads.
 - -Tunable to low power for fine control.
- Intrinsically safe against power failure
- Cryogenics + Xe systems vetted by lab safety.

Light collection at the multi-ton scale

- Rayleigh scattering: not yet a problem
- PTFE walls: extraordinarily reflective at 175 nm (7eV) $-r \sim 98\%$ or greater: "mirrored box"
- Purity should be achievable comparable to requirements for charge drift
- With $r \sim 98\%$, should get 2-3 x light of X10, X100: directly lowers threshold

LZD

- 20 ton scale-up of LZS
- Sited at 4850 ft Homestake single lab module, or expanded SNOLab.

20 Tons hits fundamental neutrino limit

- LZD at 20 tons: 10⁻⁴⁸ cm² WIMP sensitivity
- Atmospheric and diffuse supernova neutrinos set irreducible background just beyond this
- WIMP/supernova ratio independent of target

Some comments on Xe microphysics, as it affects dark matter detection

Xe microphysics

- What determines band widths?
- What determines band positions?
- What is the best measure of energy?
- Why does discrimination improve at low energy?

Energy partitioning

- Excitations:
 - Ionization (N_i)
 - Recombined ions (r) -> photons
 - Excited atoms (N_{ex}) -> photons
 - Doke: predicts 6%
- New formalism:
 - $n_e = (1 r) \cdot N_i$ $n_\gamma = \left(\frac{a}{b} \frac{N_{ex}}{N_i} + r\right) \cdot N_i$ $E = (n_e + n_\gamma) \cdot W$
- We find *W*=13.7±0.2.
- Nuclear recoils have additional factor: Lindhard

Nuclear recoils: Lindhard

- keV nuclear recoils move slower than electrons in atoms (v_{Fermi}).
- Adiabatic interaction. Electronic excitation due to overlap of shells. Stopping power

• Equal masses: significant energy "lost" to recoils. - (Essentially absent for electron recoils).

- Result: less "electronic excitation" than for electron recoils.
- Described by Lindhard (Copenhagen school, 1960's) Ionization

- J. Lindhard et al., Mat. Fys. Medd. Dan. Vid. Selsk., vol. 33, no. 10, 1963.

Scintillation

Stopping power in liquid Xe

Thermal / Phonon Energy Loss

Electron Recoil

Electronic Energy Loss

Nuclear Recoil

- Long-standing puzzles: shapes of e.r. and n.r. bands, field independence of n.r. and low-energy e.r. bands
- Nuclear recoils have *same recombination* as electron recoils.
 Discrimination based on enhanced direction-excitation light for nuclear recoils
- Qualitative (but not yet quantitative) understanding of recombination fluctuations

Concluding comments

- Two phase Xe is very powerful technology
 - -Large signal
 - -Low intrinsic backgrounds
 - Multiple method of background rejection (discrimination, self-shielding, active shielding)
- Low energy potential is high
 - -Discrimination good near threshold
 - -Factor of 2-3 better light collection might be achievable
 - -S2 only data should extend to below ~keV
 - -Calibration remains a challenge
- We should try to reach the neutrino limit

