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• 300 kg Xe, 
expected 100 kg 
fiducial

• At Sanford lab, 
Homestake SD.

• First water-
shielded large dark 
matter detector



Surface Facility at Sanford Lab

• Old Warehouse
• Occupancy starting Dec 09
• LUX has been:

— Assembling detector
— Helping create Sanford Lab
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Precision cleaned cryostat returns - July 19, 2010



Surface Operations

!
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LUX Status
• Cryogenic run - May 2011
• Full run now underway
• Davis Cavern: Beneficial occupancy March 2012
• Full running: Fall 2012
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During Lunch

Underwater



LUX Collaboration 
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Projected Reach of  LUX

• No expected background in 100 kg x 300 days
• “Beneficial occupancy” underground - March 2012
• Full running - Fall 2012

8

Simulated LUX data
(100 kg fiducial, 100 days)

mX = 100 GeV/c2

σ = 5 10-45 cm2LUX - 100 kg x 300 days

LZS 1.5 ton

LZD 20 ton
XENON100

(40 kg fiducial, 100 days) - ~800 ER event



LUX Upgrade
• Replace old PMTs with new

— Requires only new array holders, detector 
reassembly

— BG well below measured limits: total 
background reduced by 40

• Much cleaner potential nuclear recoil 
signal

• Increase in fiducial mass
• Target - 2013
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PMT 238U 
[mBq/
PMT]

232Th 
[mBq/
PMT]

40K [mBq/
PMT]

60Co 
[mBq/
PMT]

R8778 9.5±0.6 2.7±0.3 66±2 2.6±0.1

R11410 
MOD <0.4 <0.3 <8.3 2.0±0.2

LUX

LUX 
upgrade



T. Shutt - March 11 2009

Some thoughts on scaling up this 
technology
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Self-shielding in liquid xenon

Effective for detectors large 
compared to ~10 cm gamma 
penetration distance: few 100 kg 
and up.
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300 kg LUX
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Shielding
• 4 m water shield + 4850 ft depth adequate up to at least 20 ton scale.
• Liquid scintillator shield.  Effective for

— Internal neutrons
— Internal gammas
— External, high-energy neutrons

• Titanium cryostat material
— Significant new construction material for low background experiments
— No measured contamination at limits of  Oroville capability (< ~0.2 mBq/kg)
— Enables active shield

0                  1                 2                   3                  4
Shield Thickness (m)

Rock !

µ neutrons

Rock 
neutrons



175K scintillator shield
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ISOHexane scintillator, housed immediately outside LXe, at 
LXe temperature.  Goal: > 10-fold gamma veto + highly 
efficient neutron veto
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Kr Removal
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>> 1000 separation

• 85Kr -  beta decay
— Need Kr/Xe: 10 ppt, LZS 0.5 ppt, LZD 0.05 ppt
— Commercial Xe/Kr  ~ few ppb
— Chromatographic system: < 2 ppt  @ 2 kg/day 

production

• Scaling up current system
— 60 kg charcoal column
— Vacuum phase “recovery” stage
— High capacity Xe condenser
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Xe purification and analysis
• Gas phase getter purification - standard
• Very high efficiency two-phase heat exchanger

— Removes large thermal penalty to recondense

• In ~60 kg prototype, obtained purity in few days
• Cold-trap enhanced mass 

spectrometry: first sensitivity to 
required impurity levels
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Table 1. Primary components of the LUX 0.1 detector and their heat capacities.

Item Material Mass Heat
(kg) Capacity

(J/K)

Displacement
Blocks aluminum 230 1.82×105

Inner
Flange copper 162 6.32×104

IR Shield copper 112 4.37×104

Cryostat stainless
Can steel 100 5.10×104

Xenon xenon 55 8.69×103

Subtotal 659
Everything

Else 115
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Figure 5. Data taken during prototype operation showing in the top plot the effect of changing the xenon
flow rate on the temperatures. The bottom plot shows the smoothed instantaneous power measured using the
components of the experimental setup.

Using these temperatures the heat load was determined for all of the major components of the
detector. These were then used to adjust the change in the power applied by the PID controlled
heater, and the total heat load due to circulation was calculated. The result of these calculations is

– 10 –

Circulation off On: ~400 kg/day

Data from coldtrap/RGA 
arXiv: 1002:2742

open leak valve,open leak valve,
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flow through flow through 
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bypassbypass

gas purifiergas purifier

Xe is constant due to cold trap

18 ppb N2
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0.25 ppb CH4
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backgroundsbackgrounds

~few ppm Ar
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1.0 ppb N2

0.06 ppb CH4



Thermosyphon configuration testing

Thermosyphon Cryogenics
• Uniquely suitable for very large scale.

— Extremely high capacity: equivalent to ~1 m 
Ø Cu bar.

— Remote deployment of  multiple cold heads.
— Tunable to low power for fine control.

• Intrinsically safe against power failure

• Cryogenics + Xe systems vetted by lab 
safety.
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Light collection at the multi-ton scale
• Rayleigh scattering: not yet a problem
• PTFE walls: extraordinarily reflective at 175 nm (7eV)

— r ~ 98% or greater: “mirrored box”

• Purity should be achievable - comparable to requirements for 
charge drift 

• With r ~98%, should get 2-3 x light of  X10, X100: directly 
lowers threshold
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LZD

• 20 ton scale-up of  LZS
• Sited at 4850 ft Homestake single lab module, or expanded SNOLab.
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20 Tons hits fundamental neutrino limit

• LZD at 20 tons: 10-48 cm2  WIMP sensitivity
• Atmospheric and diffuse supernova neutrinos set irreducible background 

just beyond this
• WIMP/supernova ratio independent of  target
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Proven materials backgrounds;  99.5% discrimination; < 1 background n.r. event;

Nuclear Recoils Electron Recoils



T. Shutt - March 11 2009

Some comments on Xe microphysics, 
as it affects dark matter detection
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Xe microphysics
Electron recoils (Background)
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• What determines band widths?
• What determines band positions?
• What is the best measure of  

energy?
• Why does discrimination improve 

at low energy?
Drift Field Dependence

nuclear recoils

electron recoils



T. Shut, LBNL Xe- Nov 16, 2009 22

Energy partitioning

• Excitations:
— Ionization (Ni)
— Recombined ions (r) -> photons 
— Excited atoms (Nex) -> photons

• Doke: predicts 6%

• New formalism:

•We find W=13.7±0.2.
• Nuclear recoils have 

additional factor: Lindhard

ne = (1− r) · Ni

nγ = (a
b

Nex
Ni

+ r) · Ni

E = (ne + nγ) · W

(ne + nγ)er = Eer
W

(ne + nγ)nr = L · Enr
W

L = (ne+nγ)nr

(ne+nγ)er
· Eer

Enr

Leff = nγnr

nγer
· Eer

Enr
, zero field

1

Single and Dual Phase data

Charge 
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Nuclear recoils: Lindhard 
• keV nuclear recoils move slower than electrons in atoms (vFermi).
• Adiabatic interaction.  Electronic excitation due to overlap of  

shells.

• Equal masses: significant energy “lost” to recoils.
— (Essentially absent for electron recoils).

• Result: less “electronic excitation” than for electron 
recoils.

• Described by Lindhard (Copenhagen school, 1960’s).
— J. Lindhard et al.,  Mat. Fys. Medd. Dan. Vid. Selsk., vol. 33, no. 10, 1963.
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Recombination - based discrimination
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T. Shut, LBNL Xe- Nov 16, 2009

Electron recoil band w
idth

Recombination 

Electron Recoils At 122 keV

(8891 total quanta)

Understanding 
Discrimination

Energy Dependence

Total

S1+S2

S1stat+inst  

S2inst+stat

electron recoils nuclear recoils
Note: small 
recombination 
fluctuations

Predicted Discrimiantion

x2 light 
collection 
increase

XENON10



Recombination Modeling (Dahl, 2009)

• Long-standing puzzles: shapes of  e.r. and n.r. bands, field 
independence of  n.r. and low-energy e.r. bands

• Nuclear recoils have same recombination as electron recoils.
— Discrimination based on enhanced direction-excitation light for nuclear recoils

• Qualitative (but not yet quantitative) understanding of  recombination 
fluctuations
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20 keV

2 keV 20 keV

Nuclear recoils (Rival)
4 keV

Electron recoils (Penelope)



Concluding comments
• Two phase Xe is very powerful technology

— Large signal
— Low intrinsic backgrounds
— Multiple method of  background rejection (discrimination, self-shielding, active 

shielding)

• Low energy potential is high
— Discrimination good near threshold
— Factor of  2-3 better light collection might be achievable
— S2 only data should extend to below ~keV
— Calibration remains a challenge

• We should try to reach the neutrino limit
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