MODERN HADRONIC RESONANCES
THEORY

by

Norbert Ligterink

Department of Physics and Astronomy
University of Pittsburgh
Pittsburgh
Hi Norbert,

I thought you might be interested:

- **THEORY POSTDOC** in **HADRONIC PHYSICS** and low energy QCD

Physics Field(s): nuclear physics, medium energy

Job Description: The University of Pittsburgh Medium Energy Physics Group invites applications for a postdoctoral research associate position beginning in Fall, 2001.

- The candidate should have an interest in **theoretical QCD in the resonance region**

The candidate will also be expected to devote a fraction of his or her time to issues relevant to the **N* PROGRAM AT JEFFERSON LAB**. The Medium Energy Group currently consists of S. DYTMAN, J. Mueller, V. Savinov, E. SWANSON, and F. Tabakin.

Norbert was here April 2002
BARYON RESONANCE EXTRACTION FROM πN DATA USING A UNITARY MULTICHANNEL MODEL

T.P. VRANA, S.A. DYTMAN, T.-S.H. LEE
$S_{11}(1535)$ confusion

<table>
<thead>
<tr>
<th>FIT</th>
<th>Γ_{full}(MeV)</th>
<th>$b f_{\pi N}$</th>
<th>$A_{\frac{1}{2}}^p$</th>
<th>reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPI(96)</td>
<td>105</td>
<td>0.31</td>
<td>60 ± 15</td>
<td>$\pi N \rightarrow \pi N$, $\gamma p \rightarrow \pi p$</td>
</tr>
<tr>
<td>Drechsel(99)</td>
<td>80</td>
<td>0.40*</td>
<td>67</td>
<td>$\gamma p \rightarrow \pi p$</td>
</tr>
<tr>
<td>Krusche(97)</td>
<td>212</td>
<td>0.45*</td>
<td>120</td>
<td>$\gamma p \rightarrow \eta p$</td>
</tr>
<tr>
<td>Sauermann(96)</td>
<td>162</td>
<td>0.41</td>
<td>102 ± 20</td>
<td>$\pi N \rightarrow \pi N, \gamma p \rightarrow \pi, \eta p$</td>
</tr>
<tr>
<td>Pitt-ANL(00)</td>
<td>126</td>
<td>0.34</td>
<td>87 ± 3</td>
<td>All</td>
</tr>
<tr>
<td>Feuster(99-00)</td>
<td>151-215</td>
<td>\sim 0.31</td>
<td>91-106</td>
<td>All</td>
</tr>
<tr>
<td>PDG</td>
<td>100-250</td>
<td>0.35-0.55</td>
<td>90 ± 30</td>
<td>averaging</td>
</tr>
</tbody>
</table>

* uses PDG value

thanks to Steve Dytman
the little page with the big statements

“we shall overcome” … “technical” … “food for mathematicians and philosophers” Not really! Extracting microscopic information

- Unstable states are hard to handle consistently in field theory (arrow-of-time, unitarity)

- One cannot postulate $m + i \Gamma$ without a microscopic model for the interaction and decay channels
ELECTRO PROBE of HADRONIC PROCESSES

\[e \, h \rightarrow e' \, X \]

(both cartoon version)

- Resonances
- Polynomial Background
- Breit-Wigner

Fit of the data with BWs+Polyn.?

*What did we learn? *What do the parameters mean?
Hamiltonian: two discrete states a and b, one continuum ϵ.

\[H = |a\rangle m_a \langle a| + |b\rangle m_b \langle b| + \int_0^1 d\epsilon \epsilon \langle \epsilon | \langle \epsilon | \]

\[+ \int_0^1 d\epsilon g\sqrt{\epsilon(1-\epsilon)}[|a\rangle \langle \epsilon| + |b\rangle \langle \epsilon| + |\epsilon\rangle \langle a| + |\epsilon\rangle \langle b|] \]

where $|\epsilon\rangle \sim \int dk [PS]|k\rangle$. Wave function (for energy $\omega : 0 < \omega < 1$):

\[|\omega\rangle = \alpha_a |a\rangle + \alpha_b |b\rangle + \int d\epsilon \beta(\epsilon) |\epsilon\rangle \]

\[\Rightarrow \beta = \left(\frac{1}{\omega - \epsilon} + z(\omega) \delta(\omega - \epsilon) \right) g\sqrt{\epsilon(1-\epsilon)}(\alpha_a + \alpha_b) \]

Inserting β back gives $(\omega - H) \cdot \alpha = 0$, hence $\det[\omega - H] = 0$ yields z:

\[z(\omega) = \frac{1}{\omega(1-\omega)} \left(\left(\frac{g^2}{\omega - m_b} + \frac{g^2}{\omega - m_a} \right)^{-1} - (\omega - \frac{1}{2}) - \omega(1-\omega) \log \left| \frac{\omega}{1-\omega} \right| \right) \]
Some properties

perturbative definition

\[\Gamma = |\langle a | H | \epsilon \rangle|^2 = g^2 \epsilon (1 - \epsilon) \]

The phase shift

\[\delta_r = \arctan \left(\frac{-\pi}{z(\omega)} \right) \]

Scattering amplitude

\[T = \frac{1}{z(\omega) + i\pi} \approx_{g \to 0} \frac{g^2 \omega (1 - \omega)}{(\omega - m_a)(\omega - m_b)/(2\omega - m_a - m_b) + i\pi g^2 \omega (1 - \omega)} \]

Some examples:
Real amplitude ——— Imaginary amplitude ———

Scattering energy ———

Weak coupling

Argand (2X)

Strong coupling

Argand (2X)
Real amplitude ———-
Imaginary amplitude ———-
Scattering energy ———-

Weak coupling

Argand (2X)

Strong coupling

Argand (2X)
T-Matrix / S-Matrix

\[V \frac{1}{E-H_0} V \frac{1}{E-H_0} V \frac{1}{E-H_0} V \frac{1}{E-H_0} V \]

nothing new

Green's Function / Propagator / Resolvent

\[\frac{1}{E-H_0} V \frac{1}{E-H_0} V \frac{1}{E-H_0} V \frac{1}{E-H_0} V \]

Eigenstates / Möller Operator

\[\frac{1}{E-H_0} V \frac{1}{E-H_0} V \frac{1}{E-H_0} V \frac{1}{E-H_0} V \phi_0 \]

It all boils down to evaluating:

\[\sum_i^N \left(\frac{1}{E-H_0} V \right)^i \]
THE CORE

- Approximations at the level of the Hamiltonian (state selection)
- Maintaining unitarity and analyticity
- Restricting parameters through quantum field theory
- Renormalization (No fitting with cut-offs)
Fano in a nutshell

THE HAMILTONIAN (Type I)

\[H = \sum_{i=1}^{k} |i\rangle m_i \langle i| + \int d\epsilon |\epsilon\rangle \epsilon \langle \epsilon| \]

+ \sum_{i=1}^{k} \int W_i(\epsilon) d\epsilon \left(|\epsilon\rangle e^{-i\phi_i(\epsilon)} \langle i| + |i\rangle e^{i\phi_i(\epsilon)} \langle \epsilon| \right),

THE “EIGENSTATE” WITH ENERGY \(\omega \)

\[|\omega\rangle = \int d\epsilon \beta(\omega, \epsilon) |\epsilon\rangle + \sum_{i=1}^{k} \alpha_i(\omega) |i\rangle. \]
Fano in a nutshell

THE HAMILTONIAN (Type II)

\[H = |1\rangle m\langle 1| + \sum_{a=1}^{k} \int d\epsilon |\epsilon, a\rangle \epsilon \langle \epsilon, a| \]

\[+ \sum_{a=1}^{k} \int W_a(\epsilon) d\epsilon \ (|\epsilon, a\rangle e^{-i\phi_a(\epsilon)} \langle 1| + |1\rangle e^{i\phi_a(\epsilon)} \langle \epsilon, a|) \]

THE "EIGENSTATES" WITH ENERGY \(\omega \)

\[|\omega, b\rangle = \sum_{a=1}^{k} \int d\epsilon \beta_{a}^{(b)}(\omega, \epsilon) |\epsilon, a\rangle + \alpha^{(b)}(\omega) |1\rangle \].
Summary

\[H_I = \begin{pmatrix} m_1 & \cdots & W_1 \\ \vdots & \ddots & \vdots \\ W_1^* & \cdots & m_k \end{pmatrix} \quad \quad H_{II} = \begin{pmatrix} m_1 & W_1 & \cdots & W_k \\ W_1^* & \vdots & \ddots & \vdots \\ W_k^* & \cdots & \epsilon_k \end{pmatrix} \]

can be solved in closed form ... (Fano)

... Many more can be turned into discrete numerical problems with exact (within numerical accuracy) solutions.
Fano Type I

where the free lunch went for dinner

$\beta(\omega, \epsilon)$ in terms of the α’s:

$$\beta(\omega, \epsilon) = \left(\frac{1}{\omega - \epsilon} + z(\omega) \delta(\omega - \epsilon) \right) \sum_{i=1}^{k} \alpha_{i}(\omega) W_{i}(\epsilon) e^{-i\phi_{i}(\epsilon)}$$

For the consistency condition on $z(\omega)$ we define:

$$F_{ji}(\xi) = W_{i}(\xi) W_{j}(\xi) e^{i(\phi_{j}(\xi) - \phi_{i}(\xi))}$$

$$\mathcal{F}_{ji}(\eta) = \frac{1}{\pi} \int \frac{d\xi F_{ij}(\xi)}{\eta - \xi}$$

\mathcal{F}_{ji} is hermitian and yields the shifted, but real, energies of the discrete states:

$$z(\omega) = (W^{\dagger}(\omega) \cdot ((\omega - \epsilon) - \pi \mathcal{F}(\omega))^{-1} \cdot W(\omega))^{-1}$$
Restricting the # of parameters

Introducing universal quantities

(form factors NR formulae renormalization scale low-energy constants cut-off
(the hadronic Lagrangian is not fundamental!)

THE QFT BROOMSTICK

renormalization scale low-energy constants cut-off

form factors NR formulae

m5 Free graphic technology
OPAL (CERN) data

τ^− → pions
rho meson peak + tail

- OPAL
- \(\pi \pi^0\)
- \(3\pi \pi^0, \pi 3\pi^0\)
- MC corr.
- perturbative QCD (massless)
- naïve parton model
Hadronic tau–lepton decay:

Some QCD corrections

= 0

VMD: cancellations

The Chiral Interpretation
Many intermediate states between ρ and $\pi\pi\pi$.
THE COUPLING FUNCTIONS W:

Follow from connection between the diagonal part of the field-theoretical self-energy and the corresponding quantity in Fano theory.

\[
\rho \quad g \quad \rho
\]

\[
\pi \quad g \quad \pi
\]

approximated by:
\[
\propto (k^2)k^8 dk/\omega^2
\pi
\]

\[
\rho \quad g_2 \quad \pi \quad g_2 \quad \rho
\]

\[
\pi \quad g_2 \quad \pi \quad g_2 \quad \pi
\]
COVARIANCE

adding the backward diagrams to the real part restores covariance:

\[
\int d\epsilon f(\epsilon^2) \frac{1}{\omega - \epsilon} + \int d\epsilon f(\epsilon^2) \frac{1}{\omega - (2\omega + \epsilon)} = \int d\epsilon^2 f(\epsilon^2) \frac{1}{\omega^2 - \epsilon^2}
\]

(Only in the real parts, because threshold > 1800 MeV)
Problems with multi-loop Feynman diagrams

Picking just one: Pseudo-thresholds

which turn up at successive four-momentum integrations
(or as singularities in Feynman parameters)
CLEO data + my fit

log scale

\log_{10} events/0.025GeV

energy (GeV)

10^{-4} events/0.025GeV

1

0.5 1 1.5 1.5

energy (GeV)

1

500

CLEO data + my fit

norbert@washington-april-2002
CLEO data + my fit

\[\pi \pi \text{ in the presence of } \pi \pi \pi \pi \]
10^{-4} events/0.025GeV

CLEO data + my fit

$\pi \pi \pi \pi$ in the presence of $\pi \pi$

energy (GeV)
CLEO data + my fit

log scale

10^{-4} events/0.025GeV vs energy (GeV)

Total $\pi\pi$ and $\pi\pi\pi\pi$
CLEO data + my fit

log scale

10^{-4} events/0.025GeV

energy (GeV)

barrier term included
The underlined quantities compare with the data

π^4 suppresses π^2 decay

CLEO data + my fit

total $\pi\pi$ and $\pi\pi\pi\pi$ in the presence of $\pi\pi$ and $\pi\pi\pi\pi$

$\pi\pi$ only

$\pi\pi$ in the presence of $\pi\pi\pi\pi$

Barrier term included

10^{-4} events/0.025GeV

energy (GeV)

energy (GeV)
FOUR–PION DATA SUGGESTS
A WEAKER THRESHOLD BEHAVIOR

OVERALL MAGNITUDE BELOW 1.2 GeV
WITHIN 10% (from the inclusive data)

FROM 2–PION FIT

My four–pion prediction

Events / 0.032 (GeV

2)

Unfolded 3

π

π

0

Events / 25 MeV (2 entries / event)

Cleo

OPAL

with omega intermediate

without omega intermediate

M (4 π) (GeV)

M (s (GeV

2))

Events / 0.032 (GeV

2)

Unfolded 3π π0

Tauola 2.4

(from the inclusive data)
This is just the beginning foundations of modern resonance theory

PROJECTS

• Fano Type 3^V (multiple discrete and continuum states)

• Three-body statesV, t-exchangeV, $N\pi\pi$ final states (sic)

• Systematize renormalization

• Coupled channel analysis, numerical code
NSTAR 2002

workshop on the

PHYSICS OF EXCITED NUCLEONS

October 9-12, 2002
University of Pittsburgh
Pittsburgh, Pennsylvania, USA

(Baryon Resonance Analysis Group meeting - October 8)

Topics

- Meson production via electromagnetic and hadronic reactions
- Baryon resonance structure in quark models
- Baryon resonances in lattice QCD
- Chiral models
- Field theory models
- Resonance parameters from coupled channels fits
- Partial wave analysis and resonance parameters
- Strangeness production
- Helicity dependence of resonances and spin structure

Advisory Committee

C. Bennhold (GWU)
B. Briscoe (GWU)
C. Carlson (William and Mary)
J.-P. Chen (Jlab)
E. Oset (Valencia)
A. Sandorfi (Brookhaven)
D. Richards (Jlab)
B. Saghai (Saclay)

V. Burkert (Jlab)
S. Capstick (FSU)
D. Drechsel (Mainz)
S. Dytman (Pittsburgh)
J. Mueller (Pittsburgh)
R. Schumacher (CMU)
E. Swanson (Pittsburgh)

http://fafnir.phyast.pitt.edu/nstar